seniority list Documentation
Release 0.68

Robert E. Davison

Sep 29, 2024

e

seniority_list
features
program notes

installation

dependencies
installing Python and Python libraries
installing seniority_list

operational overview
abstract

4.1.1

quick outline of seniority_list
gather and prepare data
build the basic program files from the input data
create the “skeleton”
calculate standalone dataset
calculate integrated order-dependent dataset
analyze results
modify list order with the editor tool (optional)
create lists with list_builder (optional)
reinsert inactives
interacting with seniority_list

4.2.1
4.2.2
423
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9

user guide
general

5.1.1

5.2.1
522
523
524

program components and file structure
program flow

build program files
creating the static ‘skeleton’ file
creating datasets

CONTENTS

5.2.5 filtering and slicing datasets 56

5.2.6 wvisualization. oL 56

5.3 editortool. e 59
5.3.1 theeditortoolcontrols 63

5.3.2 uwsingtheeditortool 76

533 summary ... oL L. e e e e e e e e e 93

54 buildinglists L 94

5.5 notebookinterface 95
5.5.1 notebook basics 96

5.5.2 samplenotebooks L 100

5.6 programdemonstrationol e e 107
5.6.1 mewcasestudy 107

5.6.2 changing program options or settings 123

5.6.3 saving/loading calculated case studydata 124

5.6.4 anonymizinginputdata Lo Lo 126

5.7 program restorationo .o Lot e e e e e e e 129

6 excel input files 131
6.1 master.xISX L e 133
6.1.1 masterxlsx formatguide oL 134

6.2 proposals.XISX e e e e e 135
6.2.1 proposal.xlsx formatguide 136

6.3 pay_tables.XIsx e e e e 137
6.3.1 pay_tables.xlsx formatguide 139

6.3.2 joblevelhierarchy. 142

6.4 settings.XISX L e e e e 144
6.4.1 settings.xlsx formatguide, 147

6.5 anonymizinginputdata. L e 169

7 quick report 171
7.1 general L e 171
7.1.1 computed statistics oL 172

7.1.2 grouping method definitions Lo L. 172

7.1.3 excelfiles e 173

7.1.4 chartimages e e e e e 176

7.1.5 time-in-job and career pay differential report 178

8 example gallery 181
8.1 screenshotsandnotes e 181

82 editortool. e e e 235

9 converter module 241
10 editor_function module 243
11 functions module 247

12

13

14

15

16

interactive_plotting module 285
list_builder module 287
matplotlib_charting module 293
reports module 363
change log 371
16.1 wversionhistory 371
16.1.1 0.68 e e 371
16.1.2 0.67 . . . o o e e e e 371
16.1.3 0.66 e e e e 372
16.1.4 0.65 e 372
16.1.5 0.64 e 373
16.1.6 0.63 e e e 373
16.1.7 0.62 . . . o e e e e 375
16.1.8 0.61 o e e 375
16.1.9 0.60 e 376
16.1.10 0.59 o e 377
16.1.11 0.58 . . o o e e 377
16.1.12 0.57 .« . o o o e e 379
16.1.13 0.56 o e e 379
16.1.14 0.55 . . . o o e 380
16.1.15 054 . . . o o e e 381
16.1.16 0.53 L . e 381
16.1.17 0.52 . . . o e e 383
16.1.18 0.51 . . . o o e e 384
16.1.19 0.50 e 384
16.1.20 049 e 386
16.1.21 048 . . . o e e 387
16.1.22 047 . . . o e e e 389
16.1.23 046 e e e 389
16.1.24 045 e 391
16.1.25 044 e 391
16.1.26 043 e e 392
16.1.27 042 . . o o e e e 392
16.1.28 041 . . . o o e e e 393
16.1.29 0.40 e e 394
16.1.30 0.39 e 394
16.1.31 038 . . . e e 395
16.1.32 037 . . o o e e e 395
16.1.33 036 o . e e e 396
16.1.34 035 . . . e e 396
16.1.35 034 . . . L . e e 396

16.1.36 033
16137 032
16.1.38 031
16.1.39 030
16140 029
16,141 028
16.1.42 027
16143 026
16144 025
16.1.45 024
16146 023
16.1.47 022
16.1.48 021
16.1.49 020
16.1.50 0.19
16.1.51 0.18
16.1.52 0.17
16153 0.16
16.1.54 0.15
16.1.55 0.14
16.1.56 0.13
16.1.57 0.12
16158 0.11
16.1.59 0.10

17 license

17.1

GNU GENERAL PUBLIC LICENSE

18 contact

Python Module Index

Index

415

417

419

seniority_list Documentation, Release 0.68

Welcome to seniority_list!

seniority_list is an analytical tool used when seniority-based work groups merge. It
brings modern data science to the area of labor integration, utilizing the powerful data
analysis capabilities of Python scientific computing. While the software was developed
with an initial focus on the airline industry, seniority_list is adaptable to any industry
or group where workers operate under a seniority system.

seniority_list offers an unbiased, numerical method to measure and compare the out-
come of proposed combined work group seniority lists. It is able to quantify how the
careers of workers would be affected under various seniority list orderings and condi-
tions in ways that have been difficult to measure previously.

seniority_list works by generating detailed data models (datasets) for various integra-
tion scenarios as described within a few basic Excel* spreadsheets prepared by the user.
The datasets may then be thoroughly analyzed with many customizable, built-in visu-
alization functions and statistical reports, or other user-defined methods. The program
is also able to construct and modify lists in near real time, with full outcome results
produced within seconds.

seniority_list does not attempt to predict the bidding preferences of individual employ-
ees. Instead, the program focus is on utilizing variables that are fixed or that can be
modeled in a quantifiable state, such as birth dates, jobs available, proposed list order-
ings, furlough recall schedules, and special job assignment conditions or restrictions.
The model is based on the assumption that all employees will bid for the highest paying
or highest ranked jobs at all times. In reality, employees will make choices based on
individual situations. However, the overall result of these individual choices is a group
average, ultimately constrained by list positioning. seniority_list models the effect of
list ordering combined with other customizable factors to provide useful, objective in-
formation for interested parties.

A complete example case study including sample input data and analysis examples is
included with seniority_list.

Compared to tools which may have been used in the past, seniority_list offers:

* speed - easily modify parameters, rerun, and generate new comprehensive reports
within a few minutes

* flexibility - wider range of data analysis through numerous function parameters
and input file settings and options

CONTENTS 1

seniority_list Documentation, Release 0.68

* conditional modeling - accurately model “no bump, no flush” job bid-
ding/assignment, job assignment conditions and restrictions, changes in number
and category of jobs available for bid over time, and furlough and recall

* additional job granularity - part/full-time sections within common job compen-
sation levels permits additional precision

* financial studies - the model incorporates compensation data allowing individual
career and cumulative group analysis and comparison

* extensive statistical evaluation - the entire Python “scientific stack” may be uti-
lized to evaluate list and outcome metrics

* advanced visualization - an extensive range of chart types and features is readily
available through various Python and javascript libraries

* accuracy - designed with enterprise-level Python data science libraries and meth-
ods

* interactive list editing - the editor tool allows list adjustments to be made and the
results viewed within seconds

* easy adaptation - the design of the program and the simple data input interface
via spreadsheets makes it easy to use seniority_list with many different integration
cases

* open source - all programming code is open and available for examination and
usage

Note: seniority_list was developed independently. The program is not affiliated with
any labor or industry organization and is licensed under the GNU General Public Li-
cense v3.0. Please direct consulting inquiries to rubydatasystems @ fastmail.net.

Images in the web version of this documentation may be clicked for a full-size view.

*”Excel” is defined to mean the Microsoft Excel® spreadsheet program or any other
spreadsheet program which is compatible to .xIsx spreadsheet files, such as Calc'.

! https://www.libreoffice.org/discover/calc/

2 CONTENTS

mailto:rubydatasystems@fastmail.net
https://www.libreoffice.org/discover/calc/

Part I

seniority_list

CHAPTER
ONE

FEATURES

Examine and compare pre- and post-integration lists and calculated outcomes
with statistics and charts over a wide range of metrics, on an individual or
group basis

Analyze integrated list outcome models using any of the multiple attributes
within the calculated datasets including time period selection, monthly and career
compensation, job level granularity, and position percentage within job levels

Slice and group datasets by any dimension for additional insight into the real
effects of integration proposals

Model and compare various pre- and post- job assignment special conditions
within proposed integrated lists

Model job count changes on a per job category, per month basis
Model furlough and recall
Model an increase(s) in retirement age

Incorporate delayed implementation of list integration with smooth transition
from separate to combined operation

Switch easily between basic and enhanced job level studies
Model “full flush” or “no bump no flush” rules for job assignment modeling

Study financial compensation metrics with or without an assumed increase (or
decrease) in pay rates following contract expiration

Analyze combinations of any number of employee groups

Produce customized results for any subset of employee groups

Generate complete summary reports for all proposals in a matter of minutes
Share summary reports by copying a single output folder

Recalculate datasets in near real-time when inputs are modified

Experiment easily with “what-if”’ scenarios

seniority_list Documentation, Release 0.68

* Provide user data to seniority_list via a basic Excel spreadsheet interface

* Identify differences in data values which may exist between Excel spreadsheets
submitted by the parties

» Edit proposed lists intuitively using an interactive visual interface and see the
recalculated results almost immediately

* Build “hybrid” lists using a hierarchy of attribute priorities

* Reinsert inactive employees into the integrated list prior to producing a final list
result in Excel format

* Create/save/share publication-quality visualizations utilizing a variety of chart
types, format styles, and/or color mappings

seniority_list includes considerable analysis capability through a comprehensive set of
built-in plotting functions designed to be applied to the calculated datasets. The user
is free to explore the model datasets with custom functions as well.

6 Chapter 1. features

CHAPTER
TWO

PROGRAM NOTES

p python

powered

* seniority_list is written in the Python 3” programming language

* The project was initiated in October of 2015 with the first version complete in
April of 2016

* Software development is performed within the interactive Jupyter’ notebook and
the Sublime Text 3* editor.

e seniority_list primarily uses the pandas’ and NumPy® libraries for computation

e The program uses the Python matplotlib’, seaborn® and bokeh? libraries for data
visualization

* Python pickling is utilized for fast dataset storage and retrieval

* This documentation website was produced with the Sphinx'’ documentation gen-
erator along with the Shutter screenshot tool and the yEd Graph Editor!!.

Basic knowledge of Python is required. The seniority_list program code is open-source
and available here'?.

2 https://www.python.org/

3 http://jupyter.org/

4 https://www.sublimetext.com/

> http://pandas.pydata.org/

® http://www.numpy.org/

7 http://matplotlib.org/

8 https://stanford.edu/~mwaskom/software/seaborn/
% https://bokeh.pydata.org/en/latest/

10 http://www.sphinx-doc.org/en/stable/#

! https://www.yworks.com/products/yed

12 https://github.com/rubydatasystems/seniority_list/

https://www.python.org/
http://jupyter.org/
https://www.sublimetext.com/
http://pandas.pydata.org/
http://www.numpy.org/
http://matplotlib.org/
https://stanford.edu/~mwaskom/software/seaborn/
https://bokeh.pydata.org/en/latest/
http://www.sphinx-doc.org/en/stable/
https://www.yworks.com/products/yed
https://github.com/rubydatasystems/seniority_list/

seniority_list Documentation, Release 0.68

8 Chapter 2. program notes

CHAPTER
THREE

INSTALLATION

The software and program files necessary to run the seniority_list program are free to
download and use.

3.1 dependencies

Python 3*
Python libraries

bokeh!3 *
bottleneck!* *
Ipython'> *

matplotlib' *

numbal!” *

numexpr!® *

NumPy! *

openpyx
pandas?! *

120 %

python dateutil®? *

SciPy? *

13 https://bokeh.pydata.org/en/latest/

14 https://pypi.python.org/pypi/Bottleneck

15 https://ipython.org/

16 http://matplotlib.org/

17 http://numba.pydata.org/

18 https://numexpr.readthedocs.io/en/latest/index.html
19 http://www.numpy.org/

20 https://openpyxl.readthedocs.io/en/stable/
2! http://pandas.pydata.org/

22 http://1abix.org/python-dateutil

23 https://scipy.org/scipylib/

https://bokeh.pydata.org/en/latest/
https://pypi.python.org/pypi/Bottleneck
https://ipython.org/
http://matplotlib.org/
http://numba.pydata.org/
https://numexpr.readthedocs.io/en/latest/index.html
http://www.numpy.org/
https://openpyxl.readthedocs.io/en/stable/
http://pandas.pydata.org/
http://labix.org/python-dateutil
https://scipy.org/scipylib/

seniority_list Documentation, Release 0.68

seaborn?* *
xIrd® *

xIsxwriter
27 %

26 %
xIwt
Jupyter notebook*
* included with anaconda”®

seniority_list is designed to use the Jupyter Notebook?’ (notebook) as its user interface.
The notebook is required to run the interactive editor.

The name “Jupyter” is a loose acronym referring to the Julia, Python, and R program-
ming languages. The notebook supports these and many other languages.

Information concerning the Jupyter notebook may be found on the jupyter website®.
There are numerous guides and tutorial videos online as well. Specific details pertain-
ing to notebook usage with seniority_list are located in the “user guide” section.

spreadsheet program

A spreadsheet program compatible with .xIsx files is required to handle the input data
and to read output from the program. Microsoft Excel® may be used with senior-
ity_list, but is not required. LibreOffice Calc®! is an open-source spreadsheet program
which works well with seniority_list. LibreOffice is free and may be downloaded from
the LibreOffice website™?.

3.2 installing Python and Python libraries

Your computer must have the Python program and the associated Python libraries
(helper programs which perform specialized tasks) listed above on your computer to
be able to run seniority_list. Nearly all of these requirements are met with one down-
load and installation of the Anaconda scientific platform. Navigate to this webpage®
and select the Python 3.6 (or above) and 64-bit version appropriate for your operating
system. Install, using the default prompts. Detailed installation instructions are found
on the anaconda website*, if needed.

24 http://seaborn.pydata.org/

25 https://xIrd.readthedocs.io/en/latest/

26 https://xIsxwriter.readthedocs.io/

27 https://xlwt.readthedocs.io/en/latest/

28 https://www.anaconda.com/why-anaconda/

29 http://jupyter.org/

30 http://jupyter.org/

31 https://www.libreoffice.org/discover/calc/

32 https://www.libreoffice.org/download/download/
33 https://www.anaconda.com/download/success
3% https://docs.anaconda.com/anaconda/install/

10 Chapter 3. installation

http://seaborn.pydata.org/
https://xlrd.readthedocs.io/en/latest/
https://xlsxwriter.readthedocs.io/
https://xlwt.readthedocs.io/en/latest/
https://www.anaconda.com/why-anaconda/
http://jupyter.org/
http://jupyter.org/
https://www.libreoffice.org/discover/calc/
https://www.libreoffice.org/download/download/
https://www.anaconda.com/download/success
https://docs.anaconda.com/anaconda/install/

seniority_list Documentation, Release 0.68

Note: The anaconda download is 350-600mb depending on your operating system and
will require approximately 3gb of disk space when it is installed.

Note: As of September 2024, the seniority_list program is stable and us-
able with certain versions of supporting libraries only. Until the program is
re-coded to be compatible with the latest versions, a stable working enviri-
onment must be created containing the specific versions. See the section on
managing environments® found within the conda user guide.

Use the following code to create the seniority_list working environment, replacing
“test” with your preferred name for the environment. This environment must be ac-
tivated from the command line before opening the jupyter notebook and working with
the program.

conda create -n test python=3.7.6 pandas=1.0.1 numpy=1.18.1_
—scipy=1.4.1 numba=0.48.0 matplotlib=3.1.3 seaborn=0.10.0_
—ipython=7.12.0 bokeh=1.4.0 jupyter=1.0.0 ipywidgets=7.5.1.
—notebook=6.0.3 numexpr=2.7.1 openpyxl=3.0.3 python-dateutil=2.
—8.1 scikit-learn=0.22.1 tornado=6.0.3 widgetsnbextension=3.5.1.
~x1lrd=1.2.0 xlsxwriter=1.2.7 xlwt=1.3.0 jinja2=2.11.1.
—ipykernel=5.1.4 jupyter_client=5.3.4 jupyter_console=6.1.0.
—jupyter_core=4.6.1 jupyterlab=1.2.6 jupyterlab_server=1.0.6

At this point, the Python program files necessary to run seniority_list have been in-
stalled. The next step is to download and install the actual seniority_list program.

3.3 installing seniority_list

The seniority_list program and sample data files are downloadable from a GitHub
repository. GitHub is a widely used hosting service for open source software projects.
A repository is a container which holds code and other files relating to a project. The
repository address for seniority_list is:

https://github.com/rubydatasystems/seniority_list.git

The easiest way to obtain the seniority_list program files from GitHub is to install the
git*® program, which has a built-in method to grab files from GitHub repositories with
one command line input.

git may be installed through the Anaconda platform. To install git, type or copy and
paste the following command into a terminal:

35 https://docs.conda.io/projects/conda/en/latest/user- guide/tasks/manage-environments.html
36 https://git-scm.com/

3.3. installing seniority_list 11

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://github.com/rubydatasystems/seniority_list.git
https://git-scm.com/

seniority_list Documentation, Release 0.68

conda install git

Once git is installed, open a terminal and type or copy and paste the following com-
mand:

git clone https://github.com/rubydatasystems/seniority_list.git

The git program will retrieve and install all of the program and sample data files from
the GitHub repository (< 15mb).

Note: When running seniority_list with a Windows operating system, references to
the terminal apply to the Anaconda Prompt, opened from the Start Menu. Linux and
MacOS users may use the standard terminal prompt.

12 Chapter 3. installation

CHAPTER
FOUR

OPERATIONAL OVERVIEW

4.1 abstract

The program models employee future career progression, reflecting standalone and
integrated list proposals, and stores this information in files known as datasets. The
datasets are analyzed and compared across a broad range of attributes. This process
provides objective, outcome-based analytics for integration decision-makers.

13

seniority_list Documentation, Release 0.68

Proposal specified

List builder

o
/7

Gather and prepare
input data

Remove inactive
employees for
model calculations

!

Generate basic
program files

!

Create integrated
dataset skeleton file

!

Calculate standalone
dataset

3 Write standalone
dataset to file

Determine model
list order

Calculate integrated
dataset

v

‘ Analyze results ‘

v

Use editor
tool?

Re-insert
inactive
employees

Write integrated
seniority list
result to file

Editor /

A

Yes
Adjust list
order

Fig. 1: high-level dataset production diagram (click to enlarge)

14

Chapter 4. operational overview

seniority_list Documentation, Release 0.68

4.1.1 basics

The seniority_list program generates a data model built upon predictable variables
while isolating inputs that cannot be directly quantified.

In other words, certain aspects or parameters are known and unlikely to change, while
others are likely or sure to change. The factors that are known or predictable are incor-
porated within the model calculations. The unpredictable factors are handled equally
(controlled) for each group so that their influence upon accuracy of the model is mini-
mized or eliminated.

Examples of predictable variables include job counts, retirement counts, and pay scales.
Unpredictable variables include individual bidding choices and future employee work
leaves.

With the effect of the unpredictable variables removed, the results of the calculations
will be directly related to the predictable variable inputs. List order is the primary
predictable variable and has by far the most influence on the resultant datasets.

By default, seniority_list constructs the job level hierarchy in accordance with com-
pensation scales and assumes that all employees will continuously bid for the highest
paying job. Consequently, the resultant employee career metrics produced by the pro-
gram reflect and focus primarily on the true effect of the ordering of proposed integrated
lists. However, the data model job level hierarchy (used by the program job assignment
routines) may be set by the user to match the requirements of specific case studies when
necessary.

4.2 quick outline of seniority_list

The information below will cover the basics of seniority_list - an overview of how the program
works and what it does.

The “user guide” section of the documentation will provide much more detailed discussion and
instruction after basic program concepts are introduced here.

4.2.1 gather and prepare data

Before seniority_list can begin, it must be able to read specifically formatted input from
within designated project folders. Therefore, the first step for the user is to aquire the
required data and to format and store it properly.

seniority_list is designed to read all user input data directly from Excel spreadsheets.
This information includes general employee lists, compensation data, proposed inte-

4.2. quick outline of seniority_list 15

seniority_list Documentation, Release 0.68

grated lists, job assignment schedules, and many other miscellaneous user-specified
options.

During the initial phase of data preparation, any differences between input lists must be
resolved, such as the number and status of employees or the number of jobs available
in each category. The list_builder module contains functions useful for rapidly finding
differences between spreadsheets.

Excel workbook data sources

seniority_list uses four Excel workbooks as source data when creating the foundational
program files. Detailed guidance concerning the content and formatting requirements
of the input workbooks is presented in the “excel input files” section of the documen-
tation.

Each case study will require the following four workbooks to be placed within a case-
specific folder located within the program’s “excel” folder.

master.xlsx

* This is the workbook which contains general employee data. This single-
worksheet workbook contains approximately 10 columns of data for every
employee.

pay_tables.xlsx

* The compensation information will likely require the most formatting in
terms of the worksheet layout and data preparation. Specific worksheet nam-
ing and formatting is required for two worksheets, one containing hourly pay
rates for each job level/longevity combination, and another listing the total
monthly pay hours for each job category.

proposals.xlsx

* List order proposals are stored in the third workbook with a separate work-
sheet for each ordering proposal. These worksheets contain only two
columns: order number and employee number (empkey).

settings.xlsx

» This workbook stores data related to program options and schedules. It also
contains some plotting function values concerning labels and colors for out-
put charts.

16 Chapter 4. operational overview

seniority_list Documentation, Release 0.68

other list order sources

List proposals submitted by parties are normally stored and read from the Excel pro-
posals.xlsx input file.

There are two other ways to prepare and provide list order input to the program:

1. New list ordering may be generated by utilizing the functions within the
list_builder script.

2. Modifications to any list ordering may be accomplished by utilizing the interactive
list editor tool.

4.2.2 build the basic program files from the input data

seniority_list begins by creating certain files needed by the program for dataset gener-
ation and other operations.

As mentioned above, seniority_list is able to directly read and write Excel files. How-
ever, it is magnitudes faster to use a different format optimized for Python when retriev-
ing and storing data for internal program operation. Therefore, each input Excel file
is read once, converted to a pandas dataframe, and then stored as a serialized *“pickle”
file for further use within seniority_list.

seniority_list also modifies the structural format of the input files as necessary during
the conversion process. The format modification allows for fast and efficient data in-
dexing and access during program operation. For example, the compensation data will
be converted from a wide-form, spreadsheet-style table to an indexed long-form format,
while the master list file will be stored in a nearly identical row and column format as
the original.

A few helper program files derived from the input files are calculated and stored during
this process as well.

4.2.3 create the “skeleton”

Note: pandas (with a small “p”) is a powerful Python library (add-on program) used
for data analysis work. pandas, along with a number of other specialized Python li-
braries, is used extensively within the seniority_list code base. The primary data struc-
ture provided by the pandas library is the dataframe. The dataframe can be described
as an in-memory tabular structure similar to a spreadsheet, but far more capable and
powerful, especially when combined with other Python tools.

4.2. quick outline of seniority_list 17

seniority_list Documentation, Release 0.68

A dataset is the calculated data model resulting from a particular integrated list ordering
proposal and its associated conditions. The skeleton provides the starting point or frame
for the creation of a complete dataset. Each case has one unique skeleton, just as each
case has its own set of employees and lists.

The skeleton is a “long-form” pandas dataframe containing calculated data derived
from the basic “short-form” master list data.

* “Short-form” refers to a dataset containing static list data, without any future pro-
gression calculations. It’s length is equal to the number of employees.

* “Long-form” refers to a dataset that contains information for every month for each
employee remaining on the list (not retired) for that month.

The skeleton contains many columns of data, most of which is general employee data
relating to specific employees and months. All of the pre-calculated information con-
tained within the skeleton is independent of and unaffected by changes in list order.
The data includes such things as hire date, month number, employee group number,
age, and retirement date.

The skeleton forms the foundation or starting point for the production of all datasets
pertaining to a particular case. The number of rows in the skeleton and in the final
dataset is the same, but many additional columns of calculated data will be added to the
skeleton as a dataset is formed. Because each particular proposal orders the integrated
list differently, prior to each proposal dataset generation, the skeleton is first reordered
to match the order of the appropriate proposal (model) list order before any calculations
begin.

The case-specific skeleton provides a common source of pre-calculated, order-
independent data which serves as a starting point for each large dataset generation pro-
cess. The skeleton must only be sorted to match a specific proposal ordering each time
a dataset is generated.

4.2.4 calculate standalone dataset

“Standalone” refers to an unmerged, or independent employee group, and normally
relates to modeling each employee group separately as if no merger had occurred.

The skeleton file contains information for all of the employee groups.

Information pertaining to each separate group may be extracted from the skeleton file
quite easily and processed independently. Because list order within each native group is
static, it is a fairly straightforward task to compute the standalone datasets as compared
to an integrated dataset computation.

Though the job assignment process is less demanding with separate groups, there are
other conditions which complicate matters. If there are any pre-existing special rights
to jobs within one or more of the employee groups, they must be honored and applied.

18 Chapter 4. operational overview

seniority_list Documentation, Release 0.68

Additionally, the number of jobs within each job level will likely fluctuate over time.
This directly affects job assignment. Finally, furloughs and recalls must be handled
properly according to job count changes and recall schedules.

The standalone dataset is created as a pandas dataframe and is stored in a serialized
pickle file format.

4.2.5 calculate integrated order-dependent dataset

The production of an integrated dataset is more complex than the standalone datasets.

The integrated datasets are list order dependent. As mentioned above, before any work
can begin, an appropriate list order must be selected and the skeleton file sorted ac-
cordingly. A properly sorted skeleton file serves as the framework for an integrated
dataset.

An integrated list typically introduces multiplex requirements into the dataset calcula-
tion process.

A standard provision when integrating a workforce is that an employee will be able to
keep a job held prior to a merger, even if the integrated list places that employee in a
position that would not permit it. This provision is known as “no bump, no flush”.

Quite often, due to differences in demographics, hiring patterns, and job opportunities,
“fences”, or conditions and restrictions are applied prospectively to the operation of a
combined seniority list. These fences may place a cap or floor on the number of jobs
which may be held by employees from one or more of the original groups, provide
some sort of ratio assignment process, or apply some other corrective action to ensure
an equitable outcome.

It is also common to see a time span between the “official” merger date and the actual
implementation of an integrated seniority list. This delayed implementation affects the
future operation of the list.

seniority_list is able to incorporate all of these factors along with pre-existing job as-
signment conditions, job count changes, furlough and recall schedules, and compensa-
tion schedules when calculating integrated datasets.

As with the standalone dataset, the integrated dataset(s) will be pandas dataframes,
written to disk as serialized pickle files.

The integrated datasets contain one row for each employee for every month within
the model. This means that the datasets may be fairly large. While the exact size
depends on the demographics of the employees, an initial list with 12,000 employees
will typically produce a dataset with over 1.5 million rows containing 34 columns of
data. For reference, as of version 0.62, the time required to produce one dataset of that
size and write it to disc is under 3 seconds with a linux desktop computer equiped with
a relatively fast processor (i7) and a solid state drive. Processing time will be more or

4.2. quick outline of seniority_list 19

seniority_list Documentation, Release 0.68

less depending on the computer hardware and operating system utilized when running
the program.

4.2.6 analyze results

Once the datasets have been produced, the user is free to explore them using many of
the built-in methods of Python and the “scientific stack™ libraries including pandas,
NumPy, SciPy, and others. The datasets are stored as files which may be converted to
other types of files for analysis within other programs. Interactive exploration and visu-
alization of the dataset is readily available through the use of the Jupyter notebook or an
Ipython session. The Jupyter notebook is the recommended interface to seniority_list
for all users due to its excellent interactive features.

seniority_list includes many built-in plotting functions making it relatively simple to
visually explore and contrast multiple attributes of the datasets. Most of these func-
tions accept a variety of inputs allowing a wide range of analysis. The included
STATIC_PLOTTING.ipynb and INTERACTIVE_PLOTTING.ipynb notebooks
demonstrate many of these functions.

The standard built-in charts are produced by a Python library called matplotlib®’, and
another called seaborn®, which is a charting library built on top of matplotlib with a
focus on statistics. Interactive charts and the editor tool are powered by the bokeh®
library which provides users with real-time selection, filtering, and animation of the
dataset results.

seniority_list also includes a reports module with functions that produce summarized
statistical data from all calculated datasets for the current case study. The generated data
is presented in tabular form via excel spreadsheets and/or visually through numerous
chart images. The summary reports offer a high-level view into integrated list outcomes
across a limited set of attributes for quick familiarization and comparison of proposal
outcomes. The REPORTS.ipynb notebook included with the program provides an
example of the report generation process.

37 http://matplotlib.org/
38 https://stanford.edu/~mwaskom/software/seaborn/
39 https://bokeh.pydata.org/en/latest/

20 Chapter 4. operational overview

http://matplotlib.org/
https://stanford.edu/~mwaskom/software/seaborn/
https://bokeh.pydata.org/en/latest/

seniority_list Documentation, Release 0.68

4.2.7 modify list order with the editor tool (optional)

Load dataset

Select View result of
I Calculate new dataset i squeeze on density
& 7
display type, measure, & from edited list Edit squeeze] distribution
filter, and value
chart
YES b
Y
Plot editor chart
andfer analyze with
other program tools
k.
Uze edit zone Select squeeze type,
slider controls o target group, -
to select "squeeze” “| direction, and squeeze 7 Squeeze
range forcefslide value

Run "join_inactives"
script to create
final list

Fig. 2: list editing process (click to enlarge)

Initial dataset analysis will likely reveal certain issues of inequity related to a particular
list order proposal. The editor tool was designed to allow adjustment of proposed list
order through an interactive process.

4.2. quick outline of seniority_list 21

seniority_list Documentation, Release 0.68

squeeze extra filters animate proposalisave display sizefalpha gridibg hover density
sqz type emp group sqz dir use exira filters
log v F v us> v display attr | at_retire_only
spent v month oper month num
¥ scatter
squeeze: 28 >= v 0 v

poly_fit
mean yiype xtype

savgol

<> SQUEEZE < s diff v props v
CALC

edit range values: 2159 .. 4136

pl vs standalone SPCNT diff values

10.0%

-30.0% -

1 . 2 « ae)
-40.0% YN e W

2t —
6000 5000 4000 3000 2000 1000 0

ol ta b At

T t T T T T t T T T T t T T T T t T T T T t T T T T t T
6000 5000 4000 3000 2000 1000

Fig. 3: the editor tool interface

An attribute differential comparison or actual values chart is used to quickly reveal
equity distortions within an integrated dataset and to identify where modification of list
order may be necessary to minimize excessive gains or losses for a specific employee
group(s) or to more evenly distribute opportunities within the combined workforce.

A section of an integrated list may be edited by using slider controls within the editor
tool to position vertical lines on either side of the section. An algorithm within the
editor tool is then utilized to “slide” or “squeeze” the members from one of the original
employee groups up or down the list, creating a new modified order, while maintaining
proper relative ordering within each employee group. The movement of an employee
group relative to another employee group(s) within an integrated seniority list not only
changes the relative ranking of employee groups to one another but also effectively
changes the distribution of jobs over the life of the data model, which in turn affects
other outcome dataset metrics.

22 Chapter 4. operational overview

seniority_list Documentation, Release 0.68

The relative positioning of each employee group may be precisely adjusted with the
editor tool so that calculated attribute differentials (gains or losses) are minimized, or
observed inequitable attribute outcomes are reduced or eliminated.

The edit process may be repeated and adjusted as necessary to selected sections of
integrated list until the equity distortion(s) are reduced or eliminated.

4.2.8 create lists with list_builder (optional)

The list_builder module contains functions allowing custom list construction from the
master file input. “Hybrid” lists may be built by ranking and sorting the master list
according to a combined weighted attribute product. Any combination of attributes
and weightings may be incorporated to contruct lists.

Note: “Hybrid” lists must only be considered as a starting point in nearly all cases.
This is due to the simple fact that a consistent formula applied to combine lists with
inconsistent attributes, such as demographics and hiring patterns, will invariably lead
to inequitable outcome results. An unmodified hybrid style list solution would be ac-
ceptable only in the rare case when employee groups are nearly identical in terms of
attribute distribution.

4.2.9 reinsert inactives

Inactive employees are defined as employees who are not occupying or bidding for a
position which would otherwise affect the job opportunities for those employees below
him/her on the seniority list. Examples of inactive employees may include those with
a status of medical, military, or supervisory leave.

Because inactive employees do not bid for jobs and have no effect on the operation of
a seniority list, they are removed from the list prior to the dataset calculation process.
While many on inactive status will return to active status, the assumption is made that
other employees will do the opposite and provide a counterbalance.

Once a final integrated list order has been determined, the inactive employees must be
reinserted into the overall list.

The inactive employees are reinserted using the join_inactives script. The inactives
may be inserted into the integrated list by locating them next to an employee from their
native group who is either just senior or just junior to them. The final product of this
process is converted to an Excel spreadsheet, placed within the reports folder.

4.2. quick outline of seniority_list 23

seniority_list Documentation, Release 0.68

4.3 interacting with seniority_list

seniority_list was designed to use the browser-based Jupyter notebook as its interface
in all areas of functionality. The Jupyter notebook™ has a relatively shallow learning
curve while yielding vast returns.

seniority_list has been tested using FireFox and Chrome (or Chromium) browsers.
Chrome offers better performance when using seniority_list and is recommended. Fire-
Fox will work with the program, but will lag somewhat when displaying complex vi-
sualizations. Other browsers have not been tested.

There are five notebook files included with seniority_list to help the user get started.
Please refer to the user guide for more information.

40 http://jupyter.org/

24 Chapter 4. operational overview

http://jupyter.org/

CHAPTER
FIVE

USER GUIDE

This user guide will begin with a general discussion of the foundational elements of
the program followed by a detailed instruction manual.

Please read the “operational overview” section prior to tackling this user guide.

5.1

general

The programmatic goal of seniority_list is to create relatively large data models which
can be analyzed and compared. The program orders an integrated list as directed and
then uses multiple algorithms to calculate the resultant metrics.

The seniority_list program is written in a procedural style and is designed to employ the
Jupyter notebook as the user interface. Therefore, to use seniority_list, first launch the
Jupyter notebook from the terminal (PowerShell is recommended if running Windows):

jupyter notebook

A new browser window will open with a presentation of files and folders. Navigate
to the seniority_list folder and then to the desired notebook file or initialize a new
notebook as desired. The notebook interface provides a platform from which to run
the program scripts and functions. Detailed operational instructions are located in the
“notebook interface” section below.

An analysis of a particular integration will be referred to as a “case study” within the
seniority_list documentation, and the particular files, data, etc. relating to that case
study will be described as being “case-specific”.

Case-specific Excel input files are selected by the program for processing as directed by
a case_study input variable read initially as an argument to the build_program_files.py
script. The Excel input files must be formatted and located in a user-created, case-study-
named folder within the excel folder so that the program can find and process them. In
other words, the case_study input variable will be the same as the name of the folder

25

seniority_list Documentation, Release 0.68

containing the input Excel files and determines which input files will be used to create
the foundational program files.

The input files consist of four Excel files. The actual names of the Excel input work-
books and the spreadsheets within them remain the same for all case studies. Only the
name of the container folder changes and each case study has its own folder. This sys-
tem allows many different case studies to exist within the program, and makes it a trivial
excercise to switch between case studies, simply by changing the “case” argument to
the build_program_files.py script when loading a new study into the program.

After the case-specific Excel files are in place, seniority_list is able to rapidly generate
the datasets using a series of scripts as follows (simplified):

First, foundational program files are generated (pandas dataframes) and are
stored as serialized pickle files within the auto-generated dill folder with the
build_program_files.py script.

Next, a relatively long pandas dataframe is created from the freshly-created
program files. This file is know as the “skeleton” file because it serves as
the frame for all of the datasets which will be generated by the program.
The skeleton file contains employee data which remains constant regardless
of list order. The skeleton file is created by running the make_skeleton.py
script.

Finally, datasets are generated with two scripts, one for the standalone data
and one for the integrated data, standalone.py and compute_measures.py.
The integrated dataset creation process will be repeated for each list order-
ing proposal. Both the standalone and integrated datasets will incorporate
specific options and scenarios set by the user.

The process to produce the datasets may be rapidly accomplished utilizing the
RUN_SCRIPTS notebook included with the program, with modifications appropriate
for a particular case study. When the program is initially downloaded, the notebook
is set up properly for use with the sample case study included with the program. The
RUN_SCRIPTS notebook serves as a template for use within actual user case studies,
as do the other program notebooks.

seniority-list includes many visualization functions which have been designed specit-
ically for seniority list analysis. These functions are located within the mat-

plotlib_charting and interactive_plotting modules. Most of the plotting functions are
demonstrated with the sample STATIC_PLOTTING notebook.

An array of summary statistical data formulated from all outcome datasets may be gen-
erated with functions within the reports module. The REPORTS notebook contains
code cells to demonstrate the summary reports functionality of seniority_list.

The editor tool allows list order analysis, editing and feedback through an interactive
interface. The EDITOR_TOOL notebook is included with the program and will start
the editor when it is run.

26

Chapter 5. user guide

seniority_list Documentation, Release 0.68

seniority_list is also able to rapidly produce “hybrid” lists with proportional weighting
applied to any number of attributes through functions found within the list_builder
module. A sample hybrid list is created when the RUN_SCRIPTS notebook is run.

5.1.1 program components and file structure
This section describes the files which make up the seniority_list program prior to and
after running the program scripts.
The file components of seniority_list may be categorized as follows:
original files
* function modules:
— functions.py - dataset generation, editor helper routines

— matplotlib_charting.py - static charting functions

interactive_plotting.py - interactive charting functions

converter.py - convert basic job data to enhanced job data

list_builder.py - formulate list proposals

reports.py - generate basic summary reports

editor_function.py - editor tool
* scripts

— build_program_files.py - create and format intial program dataframes from
input data files

— make_skeleton.py - generate framework for datasets
— standalone.py - non-integrated dataset production
— compute_measures.py - integrated dataset production
— join_inactives.py - finalize list with inactives
* Jupyter notebooks
— RUN_SCRIPTS.ipynb - generate program files and datasets
— STATIC_PLOTTING.ipynb - create example data model visualizations
— INTERACTIVE_PLOTTING.ipynb - example interactive charts
— REPORTS.ipynb - generate high-level report, visual and tabular
— EDITOR_TOOL.ipynb - run the interactive editor tool

* Excel input

5.1. general 27

seniority_list Documentation, Release 0.68

— master.xlsx - foundational employee data
— pay_tables.xlsx - compensation data
— proposals.xlsx - list order proposals
— settings.xlsx - options and settings
generated files (all are dataframes except the .xIsx files and the dictionaries)

* datasets (pandas dataframes stored as serialized pickle files)

— ds_<proposal name>.pkl - integrated dataset(s) generated from proposed list

orders

— standalone.pkl - dataset generated with non-integrated results
* reports

— pay_table_data.xlsx - computed compensation data (Excel format)

— final xlsx - final list (Excel format)

— final.pkl - final list (dataframe format)

— ret_stats.xlsx* - retirement statistics

— annual_stats.xlsx* - annual statistics

— ret_charts* - retirement statistics chart images folder

— annual_charts* - annual statistics chart images folder

*generated with the reports module

* dictionaries

— dict_settings.pkl - options and settings

— dict_colors.pkl - colormaps for plotting

— dict_attr.pkl - dataset attribute descriptions

— dict_job_tables.pkl - monthly job counts

— editor_dict.pkl - initial values for editor tool
* indexed pay tables

— pay_table_basic.pkl - basic job levels monthly pay

— pay_table_enhanced.pkl - enhanced job levels monthly pay
* proposals

— p_<proposal name>.pkl - list order proposals

* misc.

28 Chapter 5.

user guide

seniority_list Documentation, Release 0.68

master.pkl - employee data

case_dill.pkl - single-value dataframe with case study name

last_month.pkl - percentage of retirement month working

proposal_names.pkl - the integrated list order proposals

seniority_list includes a sample integration case study for simulating an integration
involving three employee groups. The sample case_study is named “sample3”. The
sample3 folder and its contents within the excel folder contain the sample case study
data.

Note: The reference to the seniority_list folder throughout the documentation refers
to the seniority_list folder within the parent seniority_list folder.

seniority_list/seniority_list/

The images below display the file structure or “tree” views of the files and folders within
the seniority_list folder of the program. The seniority_list folder contains all of the
code used to actually operate the program. There are other files and folders located
within the seniority_list folder which are of an administrative nature and have been
removed from the tree views for clarity (.ipynb_checkpoints and __pycache__ folders).

The next several images will highlight the new files created as the various scripts are
run. The specifics concerning the purpose and product of the various scripts will be
explained later.

The left image below shows the tree structure of the program as it exists when initially
downloaded.

The file structure of seniority_list expands significantly when the build_program_files
script is run. In the right image below, new files are shown within the red boxed areas,
and new folders are shown within the green boxes. Most of the new files are pandas
dataframes which have been converted to a “pickle” (.pkl extension) file format, a for-
mat which is optimized for fast storage and retrieval. All of the “pickle” files in the dill
folder are cleared and replaced when a new case study is selected and calculated.

Notice a new folder, reports, has been created which in turn contains another new
folder with the case study name (“sample3” in this case). This folder contains a new
Excel file, pay_table_data.xlsx, pertaining to calculated compensation information.

The fact that there are three files in the dill folder beginning with “p_" indicates that
three integrated list proposals were read from the Excel input file, proposals.xlsx.

5.1. general 29

seniority_list Documentation, Release 0.68

initial program files

after build_program_files script

— build program files.py

— compute_measures.py

— converter.py

— dill

— editor_function.py

— EDITOR_TOOL.ipynb

— excel

L— sample3
master.xlsx
pay_tables.xlsx
proposals.xlsx
settings.xlsx

— functions.py

— INTERACTIVE_PLOTTING.ipynb

— interactive_plotting.py

— join_1inactives.py

— list_builder.py

— make_skeleton.py

— matplotlib_charting.py

— REPORTS.ipynb

— reports.py

— RUN_SCRIPTS.ipynb

— standalone.py

L — STATIC_PLOTTING.ipynb

3 directories, 21 files

— build_program_files.py
— compute_measures.py
—converter.py
—dill
F—|lcase _dill.pkl
—ldict_attr.pkl
—|dict_color.pkl
—|dict_job_tables.pkl
—|dict_settings.pkl
—leditor_dict.pkl
—|last_month.pkl
—|master.pkl
—|pay_table_basic.pkl
—|pay_table_enhanced.pkl
—lp_p1.pkl
—|p_p2.pkl
—|p_p3.pkl
—|proposal_names.pkl
— editor_tunction.py
— EDITOR_TOOL.ipynb
— excel
L— sample3
master.xlsx
pay_tables.xlsx
proposals.xlsx
settings.xlsx
— functions.py
—— INTERACTIVE_PLOTTING.1ipynb
— interactive_plotting.py
— join_inactives.py
— list_builder.py
— make_skeleton.py
— matplotlib charting.py
—|reports
sample3
—|pay_table_data.xlsx|
— REPORTS.1ipynb
— reports.py
— RUN_SCRIPTS.ipynb
— standalone.py
L — STATIC_PLOTTING.ipynb

5 directories, 36 files

The framework upon which datasets are built for a particular case study is the “skele-
ton” file. The skeleton file is created with the make_skeleton.py script. The output is
stored as skeleton.pkl within the dill folder, indicated in the lower left image.

Next, a “standalone” or unmerged dataset is generated which contains information for
each employee group as if a merger had not occurred. This data is all in one file,
standalone.pkl, as indicated in the lower right image.

30

Chapter 5. user guide

seniority_list Documentation, Release 0.68

after make_skeleton script after standalone script

build_program_files.py
compute_measures.py
converter.py

dill

— case_dill.pkl

— dict_attr.pkl

— dict_color.pkl

— dict_job_tables.pkl
— dict_settings.pkl
— editor_dict.pkl

— Llast_month.pkl

— master.pkl

— pay_table_basic.pkl

build_program_files.py
compute_measures.py
converter.py

dill

— case_dill.pkl

— dict_attr.pkl

— dict_color.pkl

— dict_job_tables.pkl
— dict_settings.pkl
— editor_dict.pkl

— last_month.pkl

— master.pkl

— pay_table_basic.pkl
— pay_table_enhanced.pkl

— pay_table_enhanced.pkl — p_pl.pkl
— p_pl.pkl — p_p2.pkl
— p_p2.pkl — p_p3.pkl
— p_p3.pkl — proposal_names.pkl
— proposal names.pkl ———rakglg;gnﬁnkl___1
_ ‘—|standalone.pkl
— editor_tunction.py — editor_tunction.py
— EDITOR_TOOL.ipynb — EDITOR_TOOL.ipynb
— excel — excel
L— sample3 L— sample3
master.xlsx master.xlsx
pay_tables.xlsx pay_tables.xlsx
proposals.xlsx proposals.xlsx
settings.xlsx settings.xlsx
— functions.py — functions.py
—— INTERACTIVE_PLOTTING.ipynb — INTERACTIVE_PLOTTING.1ipynb
— interactive_plotting.py — interactive_plotting.py
— Jjoin_inactives.py — join_inactives.py
— list_builder.py — list_builder.py
— make_skeleton.py — make_skeleton.py
— matplotlib_charting.py — matplotlib_charting.py
— reports — reports
sample3 L— sample3
L— pay_table data.xlsx L— pay_table_data.xlsx
— REPORTS.ipynb — REPORTS.ipynb
— reports.py — reports.py
— RUN_SCRIPTS.ipynb — RUN_SCRIPTS.ipynb
— standalone.py — standalone.py
— STATIC_PLOTTING.ipynb — STATIC_PLOTTING.ipynb
5 directories, 37 files 5 directories, 38 files

The integrated list datasets are produced with the compute_measures.py script, run
separately for each integrated list proposal. The dataset file names begin with “ds_"
(lower left image).

The final.xlsx and final.pkl files shown in the lower right image were generated by
the join_inactives.py script. Normally these files would be created at the end of the
entire analysis process when a final integrated list has been produced and the inactive
employees are reinserted into the new combined list. These files contain the same
information, only the file format is different - one is a pandas dataframe and the other
is an Excel file generated for user convenience.

5.1. general 31

seniority_list Documentation, Release 0.68

after compute_measures script

after join_inactives script

build_program_files.py
compute_measures.py
converter.py
dill
— case_dill.pkl
— dict_attr.pkl
— dict_color.pkl
— dict_job_tables.pkl
— dict settings.pkl
F—|ds_p1.pkl
F—|ds_p2.pkl
F—|ds_p3.pkl
— editor_dict.pkl
F— last_month.pkl
— master.pkl
— pay_table_basic.pkl
— pay_table_enhanced.pkl
— p_p1.pkl
— p_p2.pkl
— p_p3.pkl
— proposal_names.pkl
— skeleton.pkl
— standalone.pkl
editor_function.py
EDITOR_TOOL.1ipynb
excel
L— sample3
master.xlsx
pay_tables.xlsx
proposals.xlsx
settings.xlsx
functions.py
INTERACTIVE_PLOTTING.ipynb
interactive_plotting.py
join_1inactives.py
list_builder.py
make skeleton.py
matplotlib_charting.py
reports
L— samples
L— pay_table data.xlsx
REPORTS.1ipynb
reports.py
RUN_SCRIPTS.ipynb
standalone.py
STATIC_PLOTTING.ipynb

5 directories, 41 files

build_program_files.py
compute_measures.py
converter.py

dill

— case_dill.pkl

— dict_attr.pkl

— dict_color.pkl

— dict_job_tables.pkl
— dict_settings.pkl
— ds_p1.pkl

— ds_p2.pkl

— ds_p3.pkl

— editor dict.pkl
— |final.pkl
— Tast_month.pkl

— master.pkl
— pay_table_basic.pkl
— pay_table_enhanced.pkl
— p_pl.pkl
— p_p2.pkl
— p_p3.pkl
— proposal_names.pkl
— skeleton.pkl
— standalone.pkl
editor_function.py
EDITOR_TOOL.ipynb
excel
L— sample3
master.xlsx
pay_tables.xlsx
proposals.xlsx
settings.xlsx
functions.py
INTERACTIVE_PLOTTING.ipynb
interactive_plotting.py
join_inactives.py
list_builder.py
make_skeleton.py
matplotlib_charting.py
reports
L— sample3

[[Ftnatoxtex]
pay_table _data.xlsx

REPORTS.1ipynb
reports.py
RUN_SCRIPTS.ipynb
standalone.py
STATIC_PLOTTING.1ipynb

5 directories, 43 files

The program includes five sample Jupyter notebook files which are indicated with the
red boxes below and left.

The folders within the seniority_list folder are indicated in the lower right image.

The dill folder contains the generated program files which are used by the various
scripts to make the model datasets. The datasets are also stored within the dill folder
once they are produced. The names and the quantity of files within the dill folder will be
the same for all case studies, with the exception of case-specific proposal files (starting
with “p_"") and case-specific dataset files (starting with “ds_
the program files will be different for each case.

b

The excel folder contains a folder for each existing case study. In this view, there is

32

Chapter 5. user guide

’. The actual contents of

seniority_list Documentation, Release 0.68

only one folder, (sample3), containing the four Excel input files. If other case studies
existed, there would be additional folders within the excel folder, each containing four
Excel input files with the same names, but with the contents of the Excel file worksheets
modified as appropriate for each case.

The reports folder will contain an auto-generated folder for each case study. The Excel

files located within these folders are created by the program.

the 5 sample notebook files

program folders

— build_program_files.py
— compute_measures.py

— converter.py

— dill

— case_dill.pkl

— dict_attr.pkl

— dict_color.pkl

— dict_job_tables.pkl
— dict_settings.pkl

— pay_table_basic.pkl
— pay_table_enhanced.pkl

— proposal_names.pkl
— skeleton.pkl
'— standalone.pkl

—[EDITOR_TOOL. ipynb |

— excel
L— sample3
master.xlsx
pay_tables.xlsx
proposals.xlsx
settings.xlsx
— functions.py
— | INTERACTIVE_PLOTTING.ipynb |
— interactive_plotting.py
— join_inactives.py
— list_builder.py
— make_skeleton.py
— matplotlib_charting.py
— reports
L— sample3
final.xlsx

pay_table data.xlsx
—| REPORTS. ipynb
— [eports.py

—| RUN_SCRIPTS. ipynb |

——JSTATIC PLOTTING.ipynbl

5 directories, 43 files

— build_program_files.py
— compute_measures.py

— rter.py
——1di11i

— case_dill.pkl

— dict_attr.pkl

— dict_color.pkl

— dict_job_tables.pkl
— dict_settings.pkl

— ds_pi1.pkl — ds_pi1.pkl
— ds_p2.pkl — ds_p2.pkl
— ds_p3.pkl — ds_p3.pkl
— editor_dict.pkl — editor_dict.pkl
— final.pkl — final.pkl
— last_month.pkl — last_month.pkl
— master.pkl — master.pkl

— pay_table_basic.pkl
— pay_table_enhanced.pkl

— p_p1.pkl — p_p1.pkl
— p_p2.pkl — p_p2.pkl
— p_p3.pkl — p_p3.pkl

— proposal_names.pkl
— skeleton.pkl

— standalone.pkl

— editor_function.py
TOOL.1ipynb

master.xlsx
pay_tables.xlsx
proposals.xlsx
settings.xlsx

— functions.py

— INTERACTIVE_PLOTTING.ipynb
— 1interactive_plotting.py
— join_inactives.py

— 1list_builder.py

— make_skeleton.py
matplotlib_charting.py

xlsx
pay_table_data.xlsx
— REPORTS.ipynb

— reports.py

— RUN_SCRIPTS.1ipynb

— standalone.py

L — STATIC_PLOTTING.ipynb

5 directories, 43 files

The user input files are marked in the image below and left. The four case-specific
Excel files are located within a folder named after the case study (sample3) within the
excel folder.

The tree view below right highlights the program scripts in red and the function mod-

5.1. general

33

seniority_list Documentation, Release 0.68

ules in green. The program scripts perform most of the work of seniority_list while the
function module components are used within the scripts and the Jupyter notebooks to
perform specific actions.

user input files

scripts and function modules

— build_program_files.py
— compute_measures.py
— converter.py
— dill
— case_dill.pkl
— dict_attr.pkl
— dict_color.pkl
— dict_job_tables.pkl
— dict_settings.pkl
— ds_p1.pkl
— ds_p2.pkl
— ds_p3.pkl
— editor_dict.pkl
— final.pkl
— last_month.pkl
— master.pkl
— pay_table basic.pkl
— pay_table_enhanced.pkl
— p_p1l.pkl
— p_p2.pkl
— p_p3.pkl
— proposal_names.pkl
— skeleton.pkl
'— standalone.pkl
— editor_function.py
— EDITOR_TOOL.ipynb
— excel
L— sample3
master.xlsx
pay_tables.xlsx
proposals.xlsx
settings.xlsx
— functions.py
—— INTERACTIVE_PLOTTING.ipynb
— interactive_plotting.py
— join_inactives.py
— list_builder.py
— make_skeleton.py
— matplotlib_charting.py
— reports
sample3
final.xlsx
pay_table_data.xlsx
— REPORTS.ipynb
— reports.py
— RUN_SCRIPTS.ipynb
— standalone.py
L — STATIC_PLOTTING.1ipynb

5 directories, 43 files

— build_program_files.py

— compute_measures.py

— converter.py

— dill

— case_dill.pkl

— dict_attr.pkl

— dict_color.pkl

— dict_job_tables.pkl

— dict_settings.pkl

— ds_p1.pkl

— ds_p2.pkl

— ds_p3.pkl

— editor_dict.pkl

— final.pkl

— last_month.pkl

— master.pkl

— pay_table_basic.pkl

— pay_table_enhanced.pkl

— p_pl.pkl

— p_p2.pkl

— p_p3.pkl

— proposal_names.pkl

— skeleton.pkl

— standalone.pkl

— editor_function.py

— EDITOR_TOOL.ipynb

— excel

L— sample3
master.xlsx
pay_tables.xlsx
proposals.xlsx
settings.xlsx

— functions.py

— INTERACTIVE_PLOTTING.ipynb

— interactive_plotting.py

— join_inactives.py

— list_builder.py

— make_skeleton.py

— matplotlib_charting.py

— reports

L— sample3
final.xlsx
pay_table_data.xlsx

— REPORTS.ipynb

— reports.py

— RUN_SCRIPTS.ipynb

— standalone.py

L — STATIC_PLOTTING.ipynb

5 directories, 43 files

34

Chapter 5. user guide

seniority_list Documentation, Release 0.68

5.2 program flow

5.2.1 input data

seniority_list reads user-defined input data from four Excel workbooks. These input
files must be formatted and located properly for the program to run.

Note: The following discussion provides information concerning how the input files
fit in with program flow. Please see the “excel input files” page of this documentation
for complete descriptions and formatting requirements of the Excel input files.

The four Excel input files:
* master.xlsx
— basic employee data file
— contains data for all employee groups within one worksheet
* proposals.xlsx

— order and empkey (unique number derived from employee group number and
employee number)

— contains one worksheet for each proposed integrated list order
* pay_tables.xlsx
— pay table for basic job levels

— basic and enhanced monthly pay hours, descriptive job codes, full-time vs.
part-time job level percentages

* settings.xIsx
— scalar options (single value variables)

— tabular data sources to be converted to various lists and dictionaries

setup workflow summary
The basic idea is to use existing Excel input files workbooks as an easy
starting point or template for new case study inputs.
1. Navigate to the excel folder within the seniority_list folder.

2. Copy the sample3 (or any other case study folder) and paste it right
back into the same folder.

5.2. program flow 35

seniority_list Documentation, Release 0.68

3. Rename the new folder as the new case study name.

4. Modify the content of the workbooks within the new case study
folder to match the new case study parameters.

Input file basics

The program requires input from four prepared Excel workbooks containing
employee data, pay scales, job counts, proposed integrated list orderings,
and other program data and options information.

Examples of input information:

- job counts per job category per employee group

- changes in job counts over time

- colors to be used when plotting data

- use a constant retirement age or calculate an increase at some point

- an option to use basic or enhanced job levels

- whether or not to assume a delayed implementation of the integrated list

Input file naming and location

Data for many merger studies may be stored within seniority_list at the same
time. A naming convention applied to the folders containing the Excel input
files ensures that the program uses the correct data for the selected integra-
tion study.

The user will choose a case study name when preparing to analyze an em-
ployee group merger with seniority_list. For purposes of discussion, we will
assume there are two companies involved in a hypothetical merger, “South-
ern, Inc.” and “Acme Co.”, and the case name chosen is “southern_acme”.
This name will become the name of the folder which will contain the four
case-specific Excel input data files.

The recommended way to create the input files for a new case study is to
navigate to the excel folder, copy an existing case study input folder (the
sample3 folder if no other case studies exist), then paste it back into the excel
folder and rename it with the desired case study name (“southern_acme” in
this case.) The user will then modify the contents of the workbooks within
the case study folder to match the actual parameters of the new case study
as described within the “excel input files” section of the documentation.

The names of the four files located within a case study folder are the same
for all case studies: “master.xlsx”, “pay_tables.xIsx”, “proposals.xIsx”, and
“settings.xlsx”. These file names should not be modified because the pro-

gram will look for them specifically regardless of the case study name.

36 Chapter 5. user guide

seniority_list Documentation, Release 0.68

By far, the most of the effort involved when utilizing seniority_list will be
directed toward preparing Excel input data for consumption by the program.
However, once everything is set up, minimal effort is required to analyze
multiple integration scenarios.

Selecting a case study

With the input files in place and loaded with proper information, the user
selects an integration study for analysis by manually setting the “case” ar-
gument for the build_program_files.py script. The “southern_acme” case
study has been selected in the example below (Jupyter notebook cell com-
mand):

%run build_program_files southern_acme

This one argument will set up the program to select the proper source files for
all of the calculations used to produce multiple data models corresponding to
designated integration proposals. The user may easily switch between com-
pletely different case studies simply by changing the single argument to the
build_program_files.py script and then rerunning the program. If the user
desired to run the sample case study after analyzing the “southern_acme”
case, he/she would rerun the script as follows:

%run build_program_files sample3

After running the build_program_files script, the other scripts involved in
building the datasets must be run as well, as described in the sections be-
low. The included RUN_SCRIPTS notebook offers a template to make this
process easy for any case study, with simple modification. This will be ex-
plained within the “operation” section below.

The input Excel files and the files generated by the build_program_files
script relating to a specific case study provide the foundational information
for the main dataset generation process.

5.2.2 build program files

Processing script: build_program_files.py

This script creates the necessary support files from the input Excel files required for
program operation. The input files are read from the appropriate case study folder
within the excel folder.

The build_program_files.py script requires one argument which designates the case
study to be analyzed. That argument directs the script to look for the input files within
a folder with the same name as the argument, in the excel folder.

5.2. program flow

37

seniority_list Documentation, Release 0.68

For example, to run the script from the Jupyter notebook using the sample case study,
type the following into a notebook cell and run it:

%run build_program_files sample3

The files and folder created with build_program_files.py are as follows:
from the input Excel files:
* from proposals.xlsx:
— proposal_names.pkl
— p_<proposal name>.pkl for each proposal
 from master.xIsx:
— master.pkl
— last_month.pkl
 from pay_tables.xIsx:
— pay_table_basic.pkl
— pay_table_enhanced.pkl
— pay_table_data.pkl
* from settings.xIsx
— dict_settings.pkl
— dict_attr.pkl
created with this script without reference to the input files:

* from code within script:

case_dill.pkl

editor_dict.pkl

dict_color.pkl

case-study-named folder in the reports folder (if it doesn’t al-
ready exist)

38 Chapter 5. user guide

seniority_list Documentation, Release 0.68

descriptions of the created files:

All images may be clicked to enlarge.

The case_dill.pkl file is a tiny dataframe (only one value) containing the name of the
current case study, as set by the “case” argument of the build_program_files.py script.
It is referenced by the join_inactives.py script when writing the final.xlsx file within
the appropriate case study folder, in the reports folder.

case
value sample3

Fig. 1: case_dill mini-dataframe

The proposal_names.pkl file is a very small dataframe which contains the names of
the various list order proposals, obtained from the worksheet names within the propos-
als.xlsx input file. This file is referenced by many other functions when referencing list
order proposals.

proposals
8 pl
1 p2
2 p3

Fig. 2: proposal_names mini-dataframe

The editor_dict.pkl file is used to set the initial values in the editor tool interactive
widgets (sliders, dropdown boxes, etc.) and is modified by the editor tool when in use.

5.2. program flow 39

seniority_list Documentation, Release 0.68

{'base ds name': '°*
"box_fill alpha':
'box_fill color':
'box_line alpha':
'box_line color':
'box_line width':

‘.5,
'black",
'.8',
'black’',
'1.0",

‘case': 'sample3’',
'chk_color_apply': [0©],
'chk_display': [0],
‘chk_filter': [1],
'chk_hover on': []
"chk_hover sel': [
‘chk_mean': False,
"chk_minor grid': [],
'chk_poly fit': False,
‘chk_sagov': False,
'chk_scatter': True,
‘chk_trails': [],

‘cht title': 'spent’,
'cht_xflipped': False,
'cht xformat': '0°,

‘cht xsize': 1200,
‘cht_yflipped': False,
'cht_yformat': '0.0%',
‘cht ysize': 580,

‘edit _max': 6415,
'ez_end': 6415,

‘ez step': 5,
‘minor_grid alpha': 8.0,
'num_of months': 453,
'p2_marker alpha': 8.8,

L}
1,

'p2_marker size': 2.2,
'sel_base': 'standalone',
'sel bgc': 'White',
‘sel_bgc alpha': *.10',
'sel_cond': 'none',
'sel emp grp': '1°,

'sel filtl': ',

'sel filtz2': '',

'sel filt3': "',

'sel gridc': ‘'Gray',
'sel_gridc_alpha': '.20°',
'sel measure': 'spcnt',

‘sel mth num': '@°',
'sel_mth_oper': '==",

'sel operl': '==',
'sel oper2': '==',
'sel_oper3': '==',
'sel proposal': 'edit',
'sel sqz dir': '=< d',

'sel_sqz_type': 'log’',
'sel xtype': 'prop s',
'sel ytype': 'diff',
'slider_squeeze': 100,
"total count': 6415,

"txt inputl': "'
"txt_input2': "',
"txt input3': "',
'x_high': 4189,

'x_low': 2245}

Fig. 3: editor_dict dictionary for editor tool settings (sample values)

40 Chapter 5. user guide

seniority_list Documentation, Release 0.68

The master.pkl file is a pandas dataframe version of the master.xlsx input workbook
employee list data. The dataframe structure is the same as the worksheet structure with
the addition of a calculated “retdate” (retirement date) column.

empkey eg 1name dob doh ldate sg fur line eg order retdate
empkey
10011102 10011102 1 tooeyoo 1949-07-13 1973-02-26 1975-01-29 @ © 1 1 2014-07-13
18010475 160010475 1 rubelot 1949-82-65 1975-05-27 1975-05-27 @ @ 1 2 2014-02-05
10013096 10013096 1 yeloxid 1949-01-08 1977-01-18 1977-01-18 © O 1 3 2014-01-08
10012178 10012178 1 xayeaue 1951-06-67 1977-11-15 1977-11-15 @ @ 1 4 2016-06-07
10014447 10014447 1 finuceu 1951-10-17 1977-12-09 1977-12-69 © @ 1 5 2016-10-17
30010130 30010130 3 eueaq 1974-09-24 2008-03-18 2010-05-02 @ 1 2} 800 2039-09-24
30010638 30010638 3 uelap 1976-07-11 2008-03-22 2019-05-86 © 1 1} 801 2041-07-11
30010292 30010292 3 zaber 1974-11-13 2008-04-19 2013-87-24 8 1 0 802 2039-11-13
30010633 30010633 3 iopip 1976-12-13 2008-04-15 2019-06-26 © 1 0 803 2041-12-13
30010470 30010476 3 nufaros 1983-03-01 2008-04-19 2010-87-28 © 1 0 804 2048-03-01

[7518 rows x 11 columns]

Fig. 4: master file excerpt

The dict_attr.pkl file is a dictionary containing dataset column names as keys and de-
scriptions of those names as values, as delineated on the “attribute_dict” worksheet
within the settings.xlsx workbook. The descriptions are used for chart labeling.

5.2. program flow 41

seniority_list Documentation, Release 0.68

{'age': ‘'age’,
'cat_order': 'global job ranking',
'cpay': 'cumulative career pay',

'date': ‘'date’,
'doh': 'date of hire',
'eg': 'employee group',

‘empkey': 'employee number',

'fbff': 'full bump full flush',

‘fur': 'furlough',

'idx': 'index',

'jnum': 'job level',

'job count': 'job level count',

'jobp': 'percentage within job level’,
'‘ldate': 'longevity date’,

'line': 'active',

'Lname’': 'last name',

‘Lnum': '1list number (includes furloughed employees)',
'Lspcnt’: 'list percentage (includes furloughed employees)',
'mlong': 'longevity (months)',

'mnum’: ‘month number',

‘mpay': 'monthly pay',

'mth_pent': 'month pay percentage’,

'new order': 'editor order’,

'‘orig job': 'original job',

'pay_raise': 'pay rate multiplier’',
'‘rank_in job': 'rank in job level',

'ret mark': 'retirement month',

'retdate': 'retirement date',

's Imonths': 'starting longevity — months',
‘scale’': 'longevity pay scale’,

'sg': 'special group’,

‘snum': ‘seniority number',

'spcnt': 'seniority list percentage',
'year': 'contract year',

'ylong': 'longevity (years)'}

Fig. 5: attribute dictionary

The dict_color.pkl file is a relatively large dictionary containing matplotlib colormap
names to color lists key-value pairs. The color lists are in [red, green, blue, alpha]
format. The color dictionary is discussed in the “visualization” section below.

42 Chapter 5. user guide

seniority_list Documentation, Release 0.68

OrderedDict([('Accent’,

[(0.49803921568627452,
.78823529411764703,
.498083921568627452,
.0},
.49803921568627452,
.78823529411764703,
.49803921568627452,
.a),
.74509803921568629,
.68235294117647061,
.83137254901960789,
-9}]
.74509803921568629,
.68235294117647061,
.83137254901960789,
.a),
.99215686274509807,
.75294117647058822,
.52549019607843139,
.0},
.99215686274509807,
.75294117647058822,
.52549019607843139,
.a),

—_

—_

—

—_— —_—
HFooO@FRFOo@EOHFoDoHFo@FRo@FE

Fig. 6: color dictionary excerpt, rgba format

The dict_settings.pkl file is a dictionary containing program options and data necessary
for seniority_list to operate. Nearly all of the data from the settings.xlsx input file ends
up in this dictionary, either in native format or as a modified format as a calculated
derivative or reshaped as elements within a Python data structure (or both).

5.2. program flow 43

seniority_list Documentation, Release 0.68

93,
94},
'delayed implementation': 1,
'discount_longev_for fur': 1,
'dist count': 'split',
'dist_ratio': 'split’,
'dist sg': 'part’,
'eg counts': [[197, 470, 1056, 412, 628, 1121, @, 0],
[80, 85, 443, 163, 96, 464, 54, 66],
[0, 26, 319, @, 37, 304, 0, 0]1,
'enhanced jobs': 1,
'enhanced jobs full suffix': ' B',
'enhanced jobs part suffix': ' R',
'future raise': 0,
"imp_month': 34,
'implementation date': datetime.datetime(2016, 10, 31, o, @),
'init_ret age': 65.0,
'init_ret age months': 0,
'init_ret age years': 65,
'integrated counts preimp': 0,
'j changes': [[1, [35, 64], 43, [40, 3, 0]],
[4, [35, 64], 72, [66, 6, 0]],
[2, [1, 52], -4e8, [-377, -23, -8]],
[5, [1, 52], -510, [-474, -26, -10]],
[3, [1, 61], 411, [376, 26, 9]],
[6, [1, 61], 411, [376, 26, 9]1],
'jc_months': {1,

Fig. 7: settings dictionary excerpt

The dict_job_tables.pkl file is a dictionary containing data related to monthly job
counts. The dictionary values are numpy arrays pertaining to both standalone and in-
tegrated employee groups, incorporating changes in the number of jobs over time as
described with the job_changes worksheet within the settings.xlsx input file. These
arrays are referenced during the job assignment and analysis routines.

44 Chapter 5. user guide

seniority_list Documentation, Release 0.68

table
(array([[166, 111, 363, 1181, 218, 637, 345, 230, 475, 1229, 35, 286, 660, 19, 43, 23],
[166, 111, 358, 1185, 215, 639, 345, 230, 469, 1233, 35, 283, 662, 19, 43, 23],
166, 111, 353, 1189, 212, 641, 345, 238, 463, 1237, 35, 279, 664, 19, 43, 23],
166, 111, 348, 1194, 209, 644, 345, 230, 457, 1242, 35, 275, 667, 19, 43, 23],
166, 111, 343, 1198, 206, 646, 345, 230, 458, 1246, 35, 272, 669, 19, 43, 231,
166, 111, 338, 1203, 203, 649, 345, 238, 444, 1251, 35, 268, 672, 19, 43, 23],
166, 111, 333, 1207, 200, 651, 345, 230, 438, 1255, 35, 264, 674, 19, 43, 23],
166, 111, 328, 1212, 197, 653, 345, 238, 432, 1260, 35, 260, 676, 19, 43, 23],
166, 111, 323, 1216, 194, @&56, 345, 238, 425, 1264, 35, 257, 679, 19, 43, 23],
166, 111, 318, 1221, 191, @658, 345, 230, 419, 1269, 35, 253, 681, 19, 43, 23],

192, 128, 108, 1448, 65, 781, 388, 259, 156, 1496, 35, 95, 804, 19, 43, 23],
192, 128, 108, 1448, 65, 781, 388, 259, 156, 1496, 35, 95, 884, 19, 43, 23],
192, 128, 108, 1448, 65, 781, 388, 259, 156, 1496, 35, 95, 804, 19, 43, 23],
192, 128, 108, 1448, 65, 781, 388, 259, 156, 1496, 35, 95, 804, 19, 43, 23],
192, 128, 108, 1448, 65, 781, 388, 259, 156, 1496, 35, 95, 884, 19, 43, 23],
192, 128, 108, 1448, 65, 781, 388, 259, 156, 1496, 35, 95, 804, 19, 43, 23],
192, 128, 108, 1448, 65, 781, 388, 259, 156, 1496, 35, 95, 804, 19, 43, 23],
192, 128, 108, 1448, 65, 781, 388, 259, 156, 1496, 35, 95, 884, 19, 43, 23],
192, 128, 108, 1448, 65, 781, 388, 259, 156, 1496, 35, 95, 804, 19, 43, 23],
192, 128, 108, 1448, 65, 781, 388, 259, 156, 1496, 35, 95, B804, 19, 43, 23]]), ¢

Fig. 8: one of multiple arrays within the job table dictionary

A dataframe is created from each proposed integrated list order as indicated on
the worksheets within the proposals.xlsx workbook input file. (p_pl.pkl, p_p2.pkl,
p_p3.pkl with the sample case)

idx
empkey
16011102
10010475
100130396
10012178
10014447
10014384
10012843
10014067
16010929
10014351 10
20010692 11
10011974 12

W00 =~ O A B L R

20011068 7499
20010715 7500
20010378 7501
20011663 7502
20010104 7503
20011567 7504
20010176 7505
20010265 7506
20010549 7507
20010666 7508
20011230 7509
20010022 7510

[7510 rows x 1 columns]

Fig. 9: proposal file excerpt

5.2. program flow 45

seniority_list Documentation, Release 0.68

The pay_table_basic.pkl and pay_table_enhanced.pkl files are calculated indexed
compensation dataframes derived from the pay_tables.xlsx Excel input file. These files
provide rapid data access during the dataset creation routine.

“Indexed” means that the index of the dataframe(s) contains a unique value
representing the year, longevity step, and job level. The only column
(“monthly”) contains the corresponding monthly compensation value.

The “ptindex” (pay table index) contains year, longevity, and job level information.
The last two whole digits represent the job level. In this example case, there are 8 basic
levels and 16 enhanced levels.

indexed basic pay table indexed enhanced pay table
monthly monthly
ptindex ptindex
201300101.0 2050.92 2013e0l10l.0 2152.20
201300102.0 2050.92 2013e0102.0 1873.68
201300103.0 2050.92 201308103.0 2152.20
201300104.0 2050.92 20l1308104.0 2152.20
201300105.0 2050.92 201308105.0 1873.68
201300106.0 2050.92 201308106.0 1873.68
201300107.0 2050.92 2013e0107.0 2152.20
201300108.0 2050.92 201380108.0 1873.68
201300109.0 ©.00 201380109.0 2152.20
201300201.0 9739.44 2013e0l110.0 2152.20
201300202.08 8279.01 2013e0111.0 2152.20
201300203.0 7686.09 201380112.0 1873.68
201901107.0 8252.28 201981206.0 11553.62
201901108.0 5658.66 201981207.0 11336.45
201901109.0 ©.00 201981208.0 9869.38
201901201.0 15773.13 201981209.0 9656.00
201901202.0 13429.80 201901210.8 90©95.85
201901203.0 12646.53 201901211.8 8723.55
201901204.0 10802.97 201901212.0 8406.40
201901205.0 9201.60 2019681213.0 7918.74
201901206.0 86067.81 201961214.0 7594.62
201901207.0 8313.03 2019681215.0 5988.25
201901208.8 5706.45 2019681216.0 5213.30
201981209.0 ©.00 2019681217.0 ©.00
[864 rows x 1 columns] [1632 rows x 1 columns]

A decimal representing the portion of an employee’s final work month may be cal-
culated using retirement date and the number of days in the retirement month. This
decimal is calculated for all employee retirement dates and stored in last_month.pkl
(the “last_pay” column below) to be used when calculating dataset career earnings at-
tribute.

46 Chapter 5. user guide

seniority_list Documentation, Release 0.68

retdate

2013-12-13
2013-12-14
2013-12-27
2014-01-02
2014-01-05
2014-01-08
2014-01-14
2014-01-16
2014-01-17
2014-01-18
2014-01-25
2014-01-26

2049-11-17
2049-11-21
2049-12-24
2050-06-01
2050-06-14
2050-07-01
2050-87-21
2050-87-26
2050-08-16
2050-09-24
2051-88-09
2051-08-17

last pay

.419355
.451613
.870968
.064516
.161290
. 258065
.451613
.516129
. 548387
. 580645
. 886452
.838710

DoOoooo@oo@o@®

. 566667
. 700000
.174194
.033333
. 466667
.032258
.677419
.838710
.516129
.Booeee
.290323
. 548387

Do

[4948 rows x 1 columns]

Fig. 10: last_month file excert

The join_inactives.py script reinserts inactive employees into a combined seniority
list order and creates two files containing the final integrated seniority list. Both files
are the same - one is a pandas dataframe (final.pkl) and the other is written to disk in
the reports folder as an Excel workbook (final.xlsx). See the “building_lists” section
below for more information concerning the join_inactives.py script.

empkey eg lname dob
empkey
10011102 10611102 1 tooeyoo 1949-87-13
10010475 10010475 1 rubelot 1949-82-05
10013096 10013096 1 yeloxid 1949-01-88
20010692 20010692 2 eafeuir 1951-03-04
20011034 20011034 2 cibofen 1949-87-15
10013323 10013323 1 aoouuae 1965-65-09
16011198 10011198 1 taioe 1966-01-21
10011913 10011913 1 guioj 1966-89-14
100140605 10014005 1 uuuotau 1968-69-19
10910515 10010515 1 ooual 1970-086-14

[7516 rows x 12 columns]

Fig. 11: final file excerpt, dataframe version

doh

1973-02-26
1975-05-27
1977-01-18
1974-04-16
1977-03-12

2013-12-85
2013-12-87
2013-12-04
2013-12-06
2013-12-08

ldate

1975-01-29
1975-05-27
1977-01-18
1975-04-25
1977-03-12
2013-12-85
2013-12-87
2013-12-04
2013-12-06
2013-12-08

cooco o -

fur line eg order

oo oD o

e

= e

[S ISR FY I N TS

4919

4920
4921
4922
4923

retdate

2014-07-13
2014-02-05
2014-01-08
2016-03-04
2014-07-15
2030-05-09
2031-01-21
2031-09-14
2033-09-19
2035-06-14

5.2. program flow

47

seniority_list Documentation, Release 0.68

pay_table_data.xIsx (program-generated workbook)

seniority_list calculates total monthly compensation tables which are the source for the
pay_table_enhanced.pkl file and pay_table_basic.pkl files (above) used when generat-
ing compensation attributes within datasets. The monthly compensation data may be
reviewed on one of the worksheets from the auto-generated pay_table_data.xlsx work-
book within the reports folder. (Note that a furlough pay level has been added by the
program for each year.)

Al B | c| o | € | F | & | w | s ok | M | N | e | P | Qo | R | s | 1|
1 vear [jnum| 1 [2 | 3 | a4 [5 | 6 | 7 | 8 | 9 | 10 | 11 [12 |basic hours|full hours|part hours|jobstr|order|
2 2013 1 2050.92 9739.44 9818.01 9895.77 9974.34 10052.1 10130.67 10208.43 10287 10365.57 10443.33 10521.9 81 85 74 \ 4 1
3 2013 2 2050.92 8279.01 8344.62 8411.04 8477.46 8543.88 8610.3 8676.72 8743.14 8809.56 8875.98 8942.4 81 85 74 CA 3 2
4 2013 3 2050.92 7686.09 7747.65 7809.21 7870.77 7932.33] 7993.89 8055.45 8117.01 8178.57 8240.13 8301.69 81 85 74 CA 2 3
5 2013 4 2050.92 4915.89] 5927.58 6072.57 6219.18 6367.41 6517.26 6667.92 6872.04 7026.75 7131.24 7184.7 81 85 74 FO_4 4
6 2013 5 2050.92 4186.08) 5043.87 5166.99 5291.73 5417.28/ 5544.45 5672.43 5845.77 5976.99 6065.28 6110.64 81 85 74 FO_3 5
7 2013 6 2050.92 3889.62 4685.85 4800.06 4915.08 35031.72 5149.98 5269.05 5429.43 5550.93 5633.35 5674.86 8l 85 74 FO 2 6
8 2013 7 2050.92 5256.09 5298.21 5340.33 5381.64 5423.76/ 5465.88 5507.19 5549.31 5591.43 5632.74 5674.86 81 85 74 CA_1 7
9 2013 8 2050.92 2674.62 3216.51 3293.46 3372.03 3451.41 3531.6 3612.6 3721.14 3804.57 3860.46 3888.81 81 85 74 FO_ 1 8
10 2013 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FUR 9
11 2014 1 2050.92 10511.37 10595.61 10679.85 10764.9 10849.14 10933.38 11018.43 11102.67 11186.91 11271.15 11356.2 81 85 74 CA 4 1
12 (10 2014 2 2050.92 8933.49 9004.77 9076.86 9148.14 9220.23 9291.51 9363.6 9434.88 9506.97 9578.25 9650.34 81 85 74 CA 3 2
13 2014 3 2050.92 8293.59 8360.01 8426.43 8492.85 8560.08 8626.5 8692.92 8759.34 8825.76 8892.18 8958.6 8l 85 74 CA 2 3
14 2014 4 2050.92 5302.26 6394.95 6551.28 6709.23 6869.61 7030.8 7194.42 7413.93 7581.6 7694.19 7751.7 81 85 74 FO_ 4 4
15 2014 5 2050.92 4513.32] 5439.96 5572.8 5707.26 5843.34 5980.23 6118.74 6305.85 6447.6 6543.18 6591.78 81 85 74 FO_3 5
16 2014 6 2050.92 4193.37 5053.59 5176.71 5301.45 5427 5554.17 5682.96 5856.3 5987.52 6076.62 6121.98 8l 85 74 FO 2 6
17 2014 7 2050.92 5669.19) 5714.55 5759.91 5805.27 5850.63 5895.18 5940.54 5985.9 6031.26 6076.62 6121.17 81 85 74 CAl 7
18 (16| 2014 8 2050.92 2881.17 3465.99 3549.42 3634.47 3720.33] 3806.19 3893.67 4011.93 4101.03 4161.78 4192.56 81 85 74 FO_ 1 8
19 (17| 2014 9 0 0 0 0 0 0 0 0 0 0 FUR 9
20 [18] 2014.1 1 12503.16 12604.41 12706.47 12807.72 12908.97 13010.22 13112.28 13213.53 13314.78 13416.03| 13517.28 13618.53 81 85 74 CA 4 1
21 [19] 2014.1 2 10552.68 10641.78 10727.64 10812.69 10904.22 10988.46 11069.46 11160.18 11238.75 11358.63 11479.32 11597.58 81 85 74 CA 3 2
22 [20] 2014.1 3 10000.26 10081.26/ 10162.26 10244.88 10328.31 10410.12) 10491.93 10574.55 10655.55 10743.84 10833.75 10922.04 81 85 74 CA 2 3
23 20141 4 3659.58 6786.18/ 7926.66 8116.2 8308.17 8515.53 8750.43 8948.88 9044.46 9165.96 9248.58 9331.2 81 85 74 FO 4 4
24 2014.1 5 3659.58 5736.42] 6697.08 6857.46 7022.7 7196.85 7392.06 7562.97 7639.92 7764.66 7858.62 7950.15 81 85 74 FO_3 5
25 2014.1 6 3659.58 5436.72) 6346.35 6498.63 6654.15 6819.39 7008.12 7168.5 7244.64 7345.89 7417.98 7489.26 81 85 74 FO_2 6
26 20141 7 6601.5 6650.91 6705.18 6758.64 6808.86 6863.94 6915.78 6970.05 7022.7 7076.97 7131.24 7183.08 81 85 74 CAl 7
27 [25]2014.1 8 3659.58 3659.58 4199.04 4298.67 4398.3 4507.65 4630.77 4735.26 4784.67 4849.47 4894.02 49035.33 81 85 74 FO_1 8
28 (26| 2014.1 9 0 0 0 0 0] 0 0 0 0 0 0 0 FUR 9
20 [27 2015 1 12875.76 12979.44 13084.74 13189.23 13293.72 13398.21 13502.7 13607.19 13711.68 13815.36 13919.85 14024.34 81 85 74 CA 4 1
30 (28] 2015 2 10866.96 10957.68 11046.78 11134.26 11229.03 11314.89 11399.13 11492.28 11573.28 11696.4 11821.14 11942.64 8l 85 74 CA 3 2
31 |29 2015 3 10297.53 10380.96/ 10464.39 10549.44 10635.3 10719.54 10803.78 10888.83 10973.07 11063.79 11155.32 11246.85 81 85 74 CA 2 3
32 [30] 2015 4 3766.5 6987.87 8161.56 8356.77 8554.41 8768.25 9009.63 9215.37 9312.57 9438.12] 9523.17 9608.22 81 85 74 FO 4 4
33 [31] 2015 5 3766.5 5905.71 6894.72 7059.96 7230.87 7409.88 7611.57 7787.34 7865.91 7994.7 8091.09 8186.67 8l 85 74 FO 3 5
34 |32 2015 6 3766.5 5597.1 6533.46 6690.6 6850.98 7021.08 7215.48 7380.72 7459.29 7563.78 7637.49 7711.2 81 85 74 FO_2 6

Fig. 12: pay_table_data.xlsx example, “basic ordered” worksheet

The expanded monthly compensation table for enhanced job levels is generated by se-
niority_list automatically. The job level sort (ranking) will be consistent for all years
and will be based on a monthly compensation sort for a year and longevity selected by
the user.

“Enhanced” job levels delineate between full- and part-time positions within each basic
job level. See the discussion within the “pay_tables.xIsx” section on the “excel input
files” page of the documentation for further explanation.

48 Chapter 5. user guide

seniority_list Documentation, Release 0.68

A B [c | D | E | F [6 [H] 1 [J [K| L [M [N [o P [Q | R s T 717

1 year |jnum| 1 | 2 | 4 5 | 6 | 7 | | 9 [10 | 11 | 12 |basic hours|full hours|part hours|jobstr|order|
2 2013 1 21522 10220.4 10302.85 10384.45 10466.9 10548.5 10630.95 10712.55 10795 10877.45 10959.05 11041.5 81 85 74 CA 4B 1
3 2013 2 1873.68 8897.76 8969.54 9040.58 9112.36 9183.4 9255.18 9326.22 9398 9469.78 9540.82 9612.6 81 85 74 CA4R 2
4 2013 3 2152.2 8687.85 8756.7 8826.4 8896.1 8965.8 9035.5 9105.2 9174.9 9244.6 9314.3 9384 81 85 74 CA3B 3
5 2013 4 2152.2 8065.65 8130.25 8194.85 8259.45 8324.05 8388.65 8453.25 8517.85 8582.45 8647.05 8711.65 81 85 74 CA2B 4
[2013 5 1873.68 7563.54 7623.48 7684.16 7744.84 7805.52 7866.2 7926.88 7987.56 8048.24 8108.92 8169.6 81 85 74 CA3R 5
7 2013 6 1873.68 7021.86 7078.1 713434 7190.58 7246.82 7303.06 7359.3 7415.54 7471.78/ 7528.02 7584.26 81 85 74 CA2R 6
8 2013 7 2152.2 5158.65 6220.3 6372.45 6526.3 6681.85 6839.1 6997.2 7211.4 7373.75 7483.4 7539.5 81 85 74 FO 4B 7
9 2013 8 1873.68 4491.06 541532 5547.78 5681.72 5817.14 5954.04 6091.68 6278.16 6419.5 6514.96 6563.8 81 85 74 FO_ 4R 8
10 2013 9 2152.2 4392.8 5292.95 542215 5553.05 5684.8 5818.25 5952.55 6134.45 6272.15 6364.8 6412.4 81 85 74 FO 3B 9
1 2013 10 2152.2 4081.7 4917.25 5037.1 5157.8 5280.2 5404.3 5529.25 5697.55 5825.05 5911.75 5955.1 81 85 74 FO_2B 10
2 10 2013 11 21522 5515.65 5559.85 5604.05 5647.4 5691.6 5735.8 5779.15 5823.35 5867.55 5910.9 5955.1 81 85 74 CA_1B 11
3 2013 12 1873.68 3824.32 4607.98 4720.46 4834.42 4949.12 5065.3 5182.22 5340.58 5460.46 5541.12 5582.56 81 85 74 FO 3R 12
4 2013 13 1873.68 3553.48 4280.9 438524 4490.32 4596.88 4704.92 4813.7 4960.22 5071.22 5146.7 5184.44 81 85 74 FO 2R 13
H 2013 14 1873.68 4801.86 4840.34 4878.82 4916.56 4955.04 4993.52 5031.26 5069.74 5108.22 5145.96 5184.44 8l 85 74 CA IR 14
16 2013 15 2152.2 2806.7 3375.35 3456.1 3538.55 3621.85 3706 3791 3904.9 3992.45 4051.1 4080.85 81 85 74 FO_1B 15
17 2013 16 1873.68 2443.48 2038.54 3008.84 3080.62 3153.14 3226.4 3300.4 3399.56 3475.78 3526.84 3552.74 81 85 74 FO'IR 16
18 6 2013 17 0 0 0 0 0 0 0 0 0 FUR 17
19 [17 2014 1 2152.2 11030.45 11118.85 11207.25 11296.5 11384.9 11473.3 11562.55 11650.95 11739.35 11827.75 11917 81 85 74 CA 4B 1
20 | 18 2014 2 1873.68 9602.98 9679.94 9756.9 9834.6 9911.56 9988.52 10066.22 10143.18 10220.14 10297.1 10374.8 81 85 74 CA 4R 2
X 2014 3 2152.2 9374.65 9449.45 9525.1 9599.9 9675.55 9750.35 9826 9900.8 9976.45 10051.25 10126.9 81 85 74 CA3B 3
2014 4 21522 8703.15 8772.85 8842.55 8912.25 8982.8 9052.5 9122.2 9191.9 9261.6 9331.3 9401 81 85 74 CA2B 4
2014 5 1873.68 8161.46 8226.58 8292.44 8357.56 8423.42 8488.54 8554.4 8619.52 8685.38 8750.5 8816.36 81 85 74 CA3R 5
2014 6 1873.68 7576.86 7637.54 7698.22 7758.9 7820.32 788 7941.68 8002.36 8063.04 8123.72 8184.4 81 85 74 CA2R 6
2014 7 2152.2 5564.1 6710.75 6874.8 7040.55 7208.85 7378 7549.7 7780.05 7956/ 8074.15 8134.5 81 85 74 FO 4B 7
2014 8 1873.68 4844.04 5842.3 5985.12] 6129.42 6275.94 6423.2 6572.68 6773.22 6926.4 7029.26 7081.8 81 85 74 FO 4R 8
25 2014 9 2152.2 4736.2 5708.6 5848 5989.1 6131.9 6275.55 6420.9 6617.25 6766 6866.3 6917.3 81 85 74 FO3B 9
26 2014 10 2152.2 4400.45 5303.15 5432.35 5563.25 5695 5828.45 5963.6 6145.5 6283.2 6376.7 6424.3 81 85 74 FO 2B 10
29 [27 2014 11 2152.2 5949.15 5996.75 6044.35 609195 6139.55 6186.3 6233.9 6281.5 6329.1 6376.7 6423.45 81 85 74 CA1B 11
30 [28 2014 12 1873.68 4123.28 4969.84 5001.2 5214.04 5338.36 5463.42 5589.96 5760.9 5890.4 5977.72 6022.12 81 85 74 FO 3R 12
31 [29 2014 13 1873.68 3830.98 4616.86 4729.34 4843.3 4958 5074.18 5191.84 5350.2 5470.08 5551.48 5592.92 81 85 74 FO 2R 13
32 [30 2014 14 1873.68 5179.26 5220.7 5262.14 5303.58 5345.02 5385.72 5427.16 5468.6 5510.04 5551.48 5592.18 81 85 74 CAIR 14
33 | 31 2014 15 21522 3023.45 3637.15 37247 3813.95 3904.05 3994.15 4085.95 4210.05 4303.55 4367.3 4399.6 81 85 74 FO_1B 15
4 | 32 2014 16 1873.68 2632.18 3166.46 3242.68 3320.38 3398.82 3477.26 3557.18 3665.22 3746.62 3802.12 3830.24 81 85 74 FO_1R 16
5 | 33 2014 17 0 0 0 0 0 0 [0 0 0 0 0 0 0 0 FUR 17
36 | 34 | 2014.1 1 13120.6 13226.85 13333.95 13440.2 13546.45 13652.7 13759.8 13866.05 13972.3 14078.55 14184.8 14291.05 81 85 74 CA_4B 1
37 [35]2014.1 2 11422.64 11515.14 11608.38 11700.88 11793.38 11885.88 11979.12 12071.62 12164.12 12256.62 12349.12 12441.62 81 85 74 CA 4R 2
38 | 36 | 2014.1 3 11073.8 11167.3' 11257.4 11346.65 114427 11531.1 11616.1 11711.3 11793.75 11919.55 12046.2 12170.3 8l 85 74 CA3B 3
39 [3720141 4 10494.1 10579.1 10664.1 10750.8 10838.35 10924.2 11010.05 11096.75 11181.75 11274.4 11368.75 11461.4 81 85 74 CA2B 4
40 | 38 2014.1 5 0640.72 9722.12 9800.56 0878.26 09961.88 10038.84 10112.84 10195.72 10267.5 10377.02 10487.28 10595.32 81 85 74 CA3R 5
41 [392014.1 6 9136.04 09210.04 9284.04 0359.52 9435.74 9510.48 9585.22 9660.7 9734.7 9815.36 9897.5 9978.16 81 85 74 CA2R 6

Fig. 13:

pay_table_data.xlsx example, “enhanced ordered” worksheet

The “job_dict” worksheet information serves as the calculated source for the basic-to-
enhanced job level conversion process when required.

Fig. 14: pay_table_data.xlsx example, “job_dict” worksheet

A B @ D E F

1 job full part jobstr |full_pcnt|
2 1 1 2 Capt G4 0.6
3 2 3 5 Capt G3 0.625
4 3 4 6 Capt G2 0.65
5 4 7 8F/0 G4 0.6
6 5 9 12 F/0 G3 0.625
7 6 10 13 F/0 G2 0.65
8 7 11 14 Capt G1 0.65
9 8 15 16 F/O G1 0.65
10

Other worksheets are contained within the pay_table_data.xlsx workbook within the
reports folder for user review.

5.2.3 creating the static ‘skeleton’ file

Processing script: make_skeleton.py

Columns created:

["'mnum',
'idx',

(continues on next page)

5.2. program flow

49

seniority_list Documentation, Release 0.68

(continued from previous page)

'empkey’,
'mth_pcnt',
'date’,
'year',
'pay_raise',
"fur',
‘eg’,
'retdate’,
'doh',
'ldate’',
'"Iname’,
'line',

|l 1

Sg
'ret_mark',
'scale',
's_lmonths',

|agev]

mnum idx empkey mth_pcnt date year pay raise fur eg retdate doh ldate lname 1line sg ret mark scale s lmonths age
empkey
leelllez e] 16611162 1.000000 2013-12-31 2013.86 1.8 2] 1 2014-87-13 1973-82-26 1975-81-29 tooeyoo 1 e o 12 467 64.465054
1ee1e475 @ 1 10010475 1.000000 2013-12-31 2013.0 1.8] 1 2014-02-05 1975-05-27 1975-05-27 rubelot 1 e e 12 463 64.903226
10013096 @ 2 10013096 1.000000 2013-12-31 2013.0 1.8] 1 2014-01-08 1977-01-18 1977-01-18 yeloxid 1 e e 12 443 64.978495
1lee12178 @ 3 10012178 1.000000 2013-12-31 2013.0 1.8] 1 2016-086-87 1977-11-15 1977-11-15 xayeaue 1 e e 12 433 62.564516
10014447 @ a4 10014447 1.000000 2013-12-31 2013.0 1.8] 1 2016-16-17 1977-12-89 1977-12-89 finuceu 1 e o 12 432 62.204301
20010471 450 5606 20010471 1.000000 2051-06-30 2019.8 1.0] 2 2051-08-17 2013-63-19 2013-83-19 reloxep 1 e e 12 9 64.870968
20011588 451 5581 20011588 1.000000 2051-07-31 2019.0 1.0] 2 2051-08-89 2013-81-16 2013-01-16 aezib 1 e o 12 11 64.975806
20010471 451 5606 20010471 1.000000 2051-07-31 2019.0 1.0] 2 2051-08-17 2013-63-19 2013-83-19 reloxep 1 e o 12 9 64.954301
20011588 452 5581 20011588 0.290323 2051-08-31 2019.0 1.0] 2 2051-08-09 2013-01-16 2013-01-16 aezib 1 e 1 12 11 65.000000
20010471 452 5606 20010471 0.548387 2051-08-31 2019.0 1.0] 2 2051-08-17 2013-63-19 2013-83-19 reloxep 1 e 1 12 9 65.000000

[930858 rows x 19 columns]

Fig. 15: skeleton file excerpt

To run the script from the Jupyter notebook, type the following into a notebook cell
and run it:

%run make_skeleton

The skeleton.pkl file is a dataframe containing employee data that is independent of
list order, meaning that such information is a constant for each individual employee
throughout any data model. An example of this would be employee age.

The skeleton file can initially be in any integrated order, but the members of each em-
ployee group must be in proper relative order to each other. In other words, the sort
order of the members from any employee group must be maintained no matter how the
employee groups are meshed together in an integrated list.

The skeleton file is a relatively “long” dataframe. With the sample case study of 7500
total employees, it is almost one million rows long. The skeleton file is organized by
data model month (“mnum”), starting with the data for the first month and sequentially

50 Chapter 5. user guide

seniority_list Documentation, Release 0.68

“stacking” sequential month data below. The size (number of rows) of the data for each
month is directly related to the number of employees who remain active (non-retired)
in that month.

Much of the information in the skeleton file is constant from month-to-month, such as
date of hire and last name. Other data does change, such as date and age.

The index of the skeleton is purposefully a duplicate index of the empkeys col-
umn(unique employee ID).

Because the skeleton file contains data which is unaffected by the order of an integrated
list, it may be calculated once and simply retrieved and resorted to form the basis of
subsequent integrated list datasets.

The skeleton file is utilized in the production of both standalone and integrated datasets.

5.2.4 creating datasets

Processing scripts: standalone.py, compute_measures.py

5.2. program flow 51

seniority_list Documentation, Release 0.68

List Order Source

/ Editor /

oR |
/ List Builder /
OR |
/ Proposal Specified / Gather initial job counts
per employee group

! !

Gather projected job
Read Skeleton Read List Order Read Master List count changes over time
(per job, per group)

y
Sort skeleton file by
menth and list order The skeleton file is essentially
{use editor list order if a collection of immutable monthly
in "edit_mode") P, employee data stacked vertically.
This forms the structural The number of rows for each
foundation for successive month is reduced
the overall dataset as employees retire.
production

v

Assign original jobs to each
employee group using
group job counts,
incorporating any pre-existing

group job assignment
conditions

The job assignment routine cperates
like a cascading waterfall, assigning
jobs top to bottom within each month.

The jobs available for a particular menth
are assigned before proceeding to the
next month.

Copy standalone data (from
calculated standalone
datasets) for the
pre-implementation menths
and carry forward the last
month of standalone data for
start of integration calculations

delayed
implementation? The monthly job assignment routine
distributes jobs in the

following manner:

Beginning with the highest level job,
employees already helding that jeb from
the previous month are assigned. Then,
_Calculate the number of if there are unassigned jobs remaining
jobs available within each ceeaes within that job level, and there are

job category for all special job assignment conditions
manths (from job changes associated with that job level for the

Y

data input) current month, jobs are assigned
according to that condition. Finally, any
remaining unassigned jobs are distributed
¥ to the most senlor unassigned workers.

The program then procedes to the next
job level for the current month. When all
of the job levels for that menth are
processed, any remaining unassigned
workers are marked as furloughed.

Assign jobs to combined
group, allowing for
delayed implementation,
no bump/no flush,

assignment conditions,
enhanced/basic job levels, The assignment routine then proceeds
jobs available, to the next month, repeating until all
compensation, and months have been completed.

furlough and recall options

y

After jobs for each month
have been assigned,
calculate many
other attribute columns
and add to the dataset

v

Add compensation data
to dataset based on
current year, job level,
and lengevity

Store calculated
dataset

Fig. 16: high-level dataset creation flowchart

52 Chapter 5. user guide

seniority_list Documentation, Release 0.68

empkey

10011102
10010475
10013096
10012178
10014447
20010471
20011588
20010471
20011588
20010471

empkey

10011162
10010475
10013096
10012178
10014447
20010471
20011588
20010471
20011588
20010471

Dataset creation is the heart of seniority_list, producing a collection of metrics calcu-
lated from a particular integrated list ordering proposal, including any job assignment
conditions associated with that proposal, or from standalone list data. The datasets be-
come the source for the objective analysis of potential integrated lists and associated
conditions. Integrated datasets are generated using the compute_measures.py script.
Standalone datasets are generated using the standalone.py script.

[93085@ rows x 35 columns

Fig. 17: integrated dataset file excerpt

Note that seniority_list assigns list percentages and job ranking numbers near zero to
the best, most “senior” positions, and higher percentages and numbers to less desirable,
most “junior” positions.

Integrated datasets

Integrated datasets build upon a properly-sorted skeleton file. Integrated dataset con-
struction is highly dependent on list order.

The program uses the proposed integrated list orderings from the proposals.xlsx work-
book to sort the framework for a proposal dataset prior to calculating all of the various
attributes which are utilized for analysis. seniority_list may also process list orderings
from other sources (the editor tool and the list_builder.py script).

The technical process to resort the skeleton file is as follows:

Use the short-form “idx” column from either a proposed list or the
“new_order” column from an edited list to create a new column,
“new_order”, within the long-form skeleton dataframe.

The ordering information column data from either the proposed or edited
list is joined into the skeleton with the pandas data alignment feature using
the common empkey indexes. The skeleton may then be sorted by the month
(“mnum’) and the “new_order” columns.

The generic command to create an integrated dataset is as follows:

mnum idx empkey mth_pent date year pay raise fur eg retdate doh ldate Tname 1line sg ret mark scale s lmonths age \
a] 10011162 1.000000 2013-12-31 2013.@¢ 1.8 a 1 2014-07-13 1973-02-26 1975-01-29 tooeyoo 1 e @ 12 467 64.465054
Q 1 10010475 1.000000 2013-12-31 2013.0 1.0 Q 1 2014-02-05 1975-85-27 1975-05-27 rubelot 1 e e 12 463 64.903226
a 2 10013096 1.000000 2013-12-31 2013.¢ 1.8 a 1 2014-01-08 1977-01-18 1977-01-18 yeloxid 1 e e 12 443 64.978495
Q 3 10012178 1.000000 2013-12-31 2013.0 1.0 Q 1 2016-06-07 1977-11-15 1977-11-15 xayeaue 1 o e 12 433 62.564516
a 4 10014447 1.000000 2013-12-31 2013.6 1.8 a 1 2016-10-17 1977-12-09 1977-12-09 finuceu 1 e @ 12 432 62.204301
450 5606 20010471 1.000000 2051-06-30 2019.0 1.0] 2 2051-88-17 2013-03-19 2013-03-19 reloxep 1 0o e 12 9 64.870968
451 5581 20011588 1.000000 2051-87-31 2019.¢ 1.8 a 2 2051-08-09 2013-01-16 2013-01-16 aezib 1 e e 12 11 64.975806
451 5606 20010471 1.000000 2051-87-31 2019.0 1.0 Q 2 2051-88-17 2013-03-19 2013-03-19 reloxep 1 o e 12 9 64.954301
452 5581 20011588 ©.290323 2051-68-31 2019.6 1.8 a 2 2051-08-09 2013-01-16 2013-81-16 aezib 1 e 1 12 11 65.000000
452 5606 20010471 ©.548387 2051-08-31 2019.0 1.0] 2 2051-08-17 2013-03-19 2013-03-19 reloxep 1 o 1 12 9 65.000000
new_order orig_job jnum fbff snum spent lnum lspent rank_in_job job_count jobp mlong ylong mpay cpay cat_order

1 0.0 1 1 1.0 ©.e00257 1 0.000235 1 118 1.008475 468 39.000000 11.041560 11.041500 1.406780

2 0.0 1 1 2.0 ©.00051> 2 0.000470 2 118 1.016949 464 38.666667 11.041500 11.041500 2.813559

3 0.0 1 1 3.0 0.000772 3 0.0007685 3 118 1.025424 444 37.000000 11.0415600 11.041560 4.220339

4 0.0 1 1 4.0 ©.001030 4 0.000948 4 118 1.033898 434 36.166667 11.041500 11.041500 5.627119

5 0.0 1 1 5.0 ©0.001287 5 0.001175 5 118 1.042373 433 36.083333 11.041500 11.041500 7.033898

7412 11.0 1 1 2.0 ©.000331 2 0.000331 2 192 1.010417 460 38.333333 16.552050 5723.444050 2.000000

7386 11.0 1 1 1.0 ©0.000166 1 0.000166 1 192 1.805208 463 38.583333 16.552050 5769.527070 1.000000

7412 11.0 1 1 2.0 ©.000331 2 0.000331 2 192 1.010417 461 38.416667 16.552050 5739.996100 2.000000

7386 11.0 1 1 1.0 0.000166 1 0.000166 1 192 1.005208 464 38.666667 4.805434 5774.332504 1.000000

7412 11.0 1 1 2.0 ©.000331 2 0.000331 2 192 1.010417 462 38.500000 9.076931 5749.073031 2.000000

5.2.

program flow

53

seniority_list Documentation, Release 0.68

%run compute_measures <proposal_name>

The compute_measures.py accepts up to three arguments specifying job assignment
conditions from the following list:

['prex', 'ratio', 'count']

The arguments correspond to the ‘prex’, ‘ratio_cond’, and ‘ratio_count_capped_cond’
job assignment conditions described within the ‘settings.xIsx’ portion of the ‘ex-
cel_input_files’ section of the documentation.

The following command would run the script for proposal “p1” with both pre-existing
and a ratio job assignment conditions as specified in the settings.xlsx input file:

%run compute_measures pl prex ratio

Other options for integrated dataset construction are defined via the input files, such as
job change schedules and recall schedules.

Standalone datasets

Standalone datasets for each separate employee group are also created by the program
for comparative use. The creation process is very similar to the integrated process
described above, with the exception of the integrated list sorting and job assignment
by employee group. After the standalone datasets are created, they are combined into
one dataset (retaining the standalone metrics), permitting simple comparison with any
integrated dataset.

The following command would create a standalone dataset with a pre-existing job as-
signment condition. The condition “prex” argument is optional, and is the only condi-
tional argument accepted by the standalone.py script.

%run standalone prex

dataset attributes (columns)

The program generates many attributes or measures associated with the data model(s).
These calculated attributes become the source for data model analysis. The attributes
marked with an asterisk in the list below are precalculated within the skeleton file. The
remaining attributes below are calculated and added to a sorted skeleton file as columns
when a dataset is created.

1. mnum* - data model month number
2. idx* - index number (associated with separate group lists)

3. empkey* - standardized employee number

54 Chapter 5. user guide

seniority_list Documentation, Release 0.68

A S S

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.

27.
28.
29.
30.
31.

mth_pcnt* - percent of month for pay purposes (always one except for pro-rated
retirement month)

date* - monthly date, end of month

year* - contract year for pay purposes

pay_raise* - additional (or reduced) modeled annual pay percentage
fur* - furloughed employee, indicated with one or zero

eg* - employee group numerical code

retdate* - employee retirement date

doh* - date of hire

Idate* - longevity date

Iname* - last name

line* - active employee, indicated with one or zero

sg* - special treatment group, indicated with one or zero
ret_mark* - employee retirement month, indicated with one or zero
scale* - employee longevity year for pay purposes

s_lmonths* - employee longevity in months at starting date

age™ - age for each month

snum - seniority number for each month

mlong - employee longevity in months for each month

ylong - employee longevity in decimal years for each month
new_order - order of integrated list or edited integrated list

orig_job - employee job held at starting date (or at implementation date for the
data model months after a delayed implementation)

jnum - job (level) number

spent - monthly seniority percentage of list (active only, most senior is .0, most
junior is 1.0)

Inum - monthly employee list number, includes furloughed employees
Ispent - monthly percentage of list, includes furloughed employees
job_count - monthly count of jobs corresponding to job held by employee
rank_in_job - monthly rank within job held by employee

jobp - monthly percentage within job held by employee

5.2. program flow 55

seniority_list Documentation, Release 0.68

32. cat_order - monthly employee job ranking number (rank on list organized from
best job to least job)

33. mpay - monthly employee compensation
34. cpay - career pay (cumulative monthly pay)

These attribute names and their definitions are stored within the dict_attr.py file, gen-
erated with the build_program_files.py script.

5.2.5 filtering and slicing datasets

Datasets are large pandas dataframes and may be sliced and filtered in many ways. The
user may be interested in reviewing the pandas documentation*' concerning indexing
and selecting data from dataframes (and series) for more detailed information. One
of the more common methods particularly helpful with the seniority_list datasets is
boolean indexing. Boolean (True/False) vectors may be created by specifying attribute
column value parameters within the bracket symbols. Only rows matching a True con-
dition will be returned as part of the new, filtered dataset.

For example, to retrieve all of the data from a dataset named “ds” where employee age
was greater than or equal to 45 years:

ds[ds.age >= 45]

If an additional filter is desired, it can be added by enclosing both filters with parenthe-
ses, joined with the “&” symbol. This filter slices for employees greater than or equal
to 45 years of age and who belong to employee group (“eg”) 1:

ds[(ds.age >= 45) & (ds.eg == 1)]

Filtered datasets may be assigned to a variable and then further ananlysis conducted on
that particular subset of the original dataset. One common usage for this new filtered
dataset variable would be as the dataframe input for a plotting function.

5.2.6 visualization

The seniority_list data models are full of calculated metrics ready to be analyzed.
The pandas dataframe format was specifically designed for data analysis, and the
user is encouraged to explore the datasets with the many methods available with
the python scientific stack. In addition to these user-defined analysis techniques, se-
niority_list offers over 25 built-in visualization functions which may be used to pro-
duce highly customizable charts. One of the notebooks included with the program,
STATIC_PLOTTING.ipynb, demonstrates some of the capability of these functions

41 https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html

56 Chapter 5. user guide

https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html

seniority_list Documentation, Release 0.68

in an editable format. The INTERACTIVE_PLOTTING.ipynb notebook contains
interactive charts. Please explore the docstrings for specific descriptions of the capa-

bilities, inputs, and options available.

The built-in plotting fuctions follow a default layout convention when applicable, as

indicated below:

Chart Best
*
List Rank
\4
Date or Age Worst
Lowest <« » Highest

Fig. 18: default layout for built-in plotting functions

In the case where a chart x-axis represents list percentage or job ranking, ordering is

presented worst to best, left to right.

As mentioned previously, the plotting functions may receive pre-filtered datasets if the
user desires to study a specific subset. Additionaly, many of the functions contain built-
in filtering arguments to make this option more convenient.

Example plotting function definition with attribute filtering arguments:

def stripplot_eg_density(df,
mnum,
eg_colors,
ds_dict=None,
attrl=None,
operl=">=",
vall=0,
attr2=None,
oper2=">=",
val2=0,
attr3=None,
oper3=">=",
val3=0,

(continues on next page)

5.2. program flow

57

seniority_list Documentation, Release 0.68

(continued from previous page)

bg_color="white",
title_fontsize=12,
suptitle_fontsize=14,
xsize=5,

ysize=10):

The “attrx”, “operx”, and “valx” (substitute x for a common number: 1, 2, or 3) in-
puts allow the user to specify a dataset filtering operation by specifying the attribute,
operator, and value respectively.

For example, in the function argument excerpt below, the visualization would only
include employees with a longevity date less than or equal to December 31, 1986.

attrl="ldate', operl="<=', vall="1986-12-31",

The following code example demonstrates how the function above could be used within
a Jupyter notebook cell to filter the input “p1” dataset to include only employees who
are at least 62 years old:

import matplotlib_charting as mp

mp.stripplot_eg_density('pl’,
40,
eg_colors,
attrl="age',
operl=">=",
vall="62",
ds_dict=ds_dict,
xsize=4)

The slice_ds_by_index_array function permits another type of specific filtering relat-
ing to a certain condition existing within a particular month. The function will find the
employee data which meets the selected criteria within the selected month, and then
use the index of those results to load data from the entire dataset for the matching em-
ployees. For example, a study of the global metrics for only employees who were older
than 55 years of age during month 24 could be easily performed. The output of this
function is a new dataframe which becomes input for other analysis functions.

seniority_list offers a wide range of chart plotting color schemes. A color dictionary is
created as part of the build_program_files.py script with matplotlib colormap names
as keys and lists of colors as values. All matplotlib colormaps (87 as of September
2017) are now available for plotting. Each color list is automatically generated with a
length equal to the number of job levels in the data model + 1. This supplies a color for
each job level plus an additional color for a furlough level. Additional customization
of the colormaps is available - please see the matplotlib_charting.py module plotting

58 Chapter 5. user guide

seniority_list Documentation, Release 0.68

function make_color_list docstring®” for full information. To use one of the generated
colormaps, call cdict[“<colormap name>"] where “cdict” is a variable pointing to the
color dictionary.

The “example gallery**” section of the documentation showcases more of the visual-

ization capabilities of seniority_list.

The visualization functions are located within the matplotlib_charting.py module.

5.3 editor tool

seniority_list excels at outcome analysis of integrated list proposals. A powerful addi-
tional feature of seniority_list is the ability to easily modify list ordering and condi-
tional inputs in order to achieve equitable outcome results. This task is accomplished
through the use of the editor tool. The editor tool allows the user to make precise
adjustments to integrated list order segments through an intuitive, interactive, and iter-
ative visual process. The integrated outcome result for each modification is presented
to the user in near real time, for further analysis and editing.

After a change or edit has been made to an integrated list proposal, the editor tool
creates a completely new outcome dataset based on that modification. The user then
selects attributes from the new dataset to be viewed and measured and/or compared
to another dataset. The tool will display the results for each employee group indepen-
dently within the main chart area.

For example, the need for an adjustment to a proposed integrated list may be indicated
when its differential outcome result reveals significant loss for one work group in terms
of job opportunities, career compensation, or another job quality metric while showing
significant gains in the same areas for another group. Outcome inequities will certainly
exist when a strict formula(s) is applied when combining lists, unless each employee
group list contains a relatively equivalent distribution of age, hiring patterns, and jobs.
Inequities may also exist due to one or more of the parties attempting to gain advantage
for members of their own group at the expense of the other group(s). Whatever the
cause, it is relatively easy to alleviate or eliminate outcome equity distortions with the
editor tool.

By utilizing the recursive editing feature of the editor tool, the user may create entirely
new integrated list proposals with objective, quantifiable, and balanced outcomes.
Outcome results are observable directly within the tool interface and may be easily
validated with the other analysis capabilities of seniority_list.

42 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.make_color_list
43 http://rubydatasystems.com/gallery.html

5.3. editor tool 59

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.make_color_list
http://rubydatasystems.com/gallery.html

seniority_list Documentation, Release 0.68

The editor tool is used within the Jupyter notebook and is run as a bokeh server ap-
plication usinge the editor function from the editor_function module. Optional styling
arguments may be passed to the function but are not required for it to run.

The bokeh FunctionHandler and Application class objects are used to run the editor
within the notebook, along with the functools “partial” method which permits optional
editor function arguments to be used.

import editor_function as ef
from functools import partial

from bokeh.application import Application
from bokeh.application.handlers import FunctionHandler

from bokeh.io import show, output_notebook
output_notebook()
handler = FunctionHandler(partial(ef.editor,

#insert editor function arguments here.
—as desired...

)

app = ApplicationcChandler)
show (app)

There is no limit to the number of “edits” which may be accomplished - the user may
recursively apply as many large or small adjustments as are needed to achieve the de-
sired results. Additionally, the tool may be reset to an original unedited list proposal at
any time, so that the user may freely explore the tool confidently.

The editor tool is able to incorporate job assignment conditions (conditions and restic-
tions) within modified list outcomes. (See the “applying conditions” section below).

Outcome values may be displayed within the main chart area using either an absolute
(actual) attribute outcome of a list proposal, or a comparative differential attribute
result between two proposals. The user may quickly switch between the two views
using a dropdown selection and button click.

The tool offers a filtering feature so that attribute cohorts from each employee group
may be isolated and measured. For example, this capability permits comparison of
employees from each group hired before a selected year, holding a specific job, or
display of selected data relating to a particular data model month.

Animation of monthly data model results, hovering over data points for tooltip infor-
mation, real-time adjustment of chart colors and element sizing, and other interactive
exploration features are included with the tool.

60 Chapter 5. user guide

seniority_list Documentation, Release 0.68

Note: There is a notebook included with seniority_list, EDITOR_TOOL.ipynb,
which makes it easy to open the tool.

The editor tool interface consists of input controls, the main chart, and a distribution

density chart.
squeeze extra filters animate proposalisave display size/alpha aridibg hover density
sz type emp group sqz dir [use extra filters
log v 2 v us» v display attr: |« at_retire_only
spent v . o month oper month num
squeeze: 28 & scaiter >= v 0 v
[poly_fit
|~ | [mean ytype xtype

[savgol

< > SQUEEZE < > dift v prop_s ¥

edit range values: 2159 .. 4136

pl vs standalone SPCNT diff values

t T T T t T T T T T T T T t T T T T t T T T T t T T T T
6000 5000 3000 2000 1000 1)

t T T T T t T t T T T t T T T T t
6000 5000 4000 3000 2000 1000

Fig. 19: the editor tool interface

The following flowchart presents the overall list editing process. The sections below
will describe the process in detail.

5.3. editor tool 61

seniority_list Documentation, Release 0.68

Load dataset

Select View result of
h Calculate new dataset ; squeeze on density
« 7
dlspfli?ti:ygﬁd T:liiure' < from edited list Edit squeeze distribution
' chart
YES A
Y
Plat editor chart
andfor analyze with
other program tools
Y
Use edit zone Select squeeze type,
slider controls - target group, -
to select "squeeze" | direction, and squeeze = Squeeze
range force/slide value

Run "join_inactives”
script to create
final list

Fig. 20: list editing process

Files created/updated by the editor tool:

With “CALC” button:
* p_edit.pkl
* editor_dict.pkl

With “SAVE EDITED DATASET” button:
* p_edit.pkl
* editor_dict.pkl
* ds_edit.pkl

With “SAVE EDITED ORDER to proposals.xlsx” button:
» proposals.xlsx (add or replace an “edit” worksheet)

Note: Edited datasets are not automatically saved. The user must click
on the “SAVED EDITED DATASET” button (located on the proposal/save

62 Chapter 5. user guide

seniority_list Documentation, Release 0.68

tab) to preserve an edited dataset. Previously saved edited datasets will be
overwritten unless the ds_edit.pkl file is first moved outside of the dill folder.

5.3.1 the editor tool controls

The editor function itself accepts some arguments, but most of the interaction with
the editor tool will be through the editor tool controls, consisting of various sliders,
dropdowns, checkboxes, and buttons.

squeeze extra filters animate proposal_save display size_alpha grid_bg hover density

sz type emp group sqz dir use extra filters
log v 2 v u == - display attr: # at_retire_only
spent v . " month oper month num
squeeze: 28 scatter »= v 0 v

poly_fit
mean ytype xtype

> SQUEEZE < = savgol dift v prop_s ¥

CALC

edit range values: 2297 .. 4142

The editor controls are grouped into several sections consisting of the upper left panels,
the center section, the upper right panels, and the edit zone slider along the spanning
the bottom of the control area.

upper left panels) upper right panels
\ center section /
sgueeze extra filiers animate proposal_save display size_alpha grid_bg hover density
sqzZ type emp group sqz dir use extra filters
log v @ v u== v display attr: « at_retire_only
spent = month oper month num
#| scatter
squeeze: 28 »= v 0 v
poly_fit
mean yiype xtype
> < > savgol diff v prop.s ¥

edit range values: 2297 .. 4142

Fig. 21: editor control grouping with the edit zone slider at the bottom (unmarked)

Many editor tool controls are contained within subpanels, selectable by tabs at the top
of the tool.

The controls will be introduced below, proceding left to right as they appear within the
editor tool. Details on how to use the controls will be covered in the next section.

5.3. editor tool 63

seniority_list Documentation, Release 0.68

squeeze panel

This panel is used extensively during the editing process.

squeeze extra filters animate proposal/save
sQz type emp group sqz dir
log v 2 v u == v

squeeze: 28

Fig. 22: squeeze panel (upper left panels)

*sq type dropdown
-log
select a log or incremental packing squeeze operation
—slide
select a defined positional movement squeeze operation
*emp grp dropdown

— select the employee group (integer code) to move within the selected
section of the integrated list

*sqz dir dropdown
— select the direction of movement for the squeeze operation
*squeeze slider
— adjust the single slider control to control:
squeeze force if the “sq type” dropdown is set to “log”
% list position movement if the “sq type” dropdown is set to “slide”
*edit range toggle buttons
— precisely adjust the edit zone cursor lines on the main chart
*“SQUEEZE” button

— command the program to execute a squeeze (list order modification)

64 Chapter 5. user guide

seniority_list Documentation, Release 0.68

extra filters panel

The main chart display output may be further filtered by the inputs on this panel.

squeeze extra filters animate proposalfsave
) Val 1l
Filter 1 Oper 1l
v == v
Filter 2 Oper 2 Val 2
L = L
Filter 3 Oper 3
Val 3
v == v

Fig. 23: extra filters panel (upper left panels)

eattribute dropdowns

— select the dataset attribute to filter
eoperator dropdowns

— select the mathematical operator to use for the filter
evalue input boxes

— type in the value limit for the filter

The additional filters will not work unless the “use extra filters” checkbox is checked
on the “display” panel.

animate panel

The editor tool is able to display results for any data model month. The animate feature
brings this information to life. Monthly results may be quickly displayed sucessively
by user controlled forward and backward buttons, automatically with a “PLAY” but-
ton, or through the use of a slider control. Outcome results over time may be quickly
understood, providing rapid insight into equity distortions or validation of equitable
solutions, and everything in between.

5.3. editor tool 65

seniority_list Documentation, Release 0.68

sgueeze exitra filters animate proposal/save
» Play Reset
Month: 199
BACK FWD refresh sizefalpha

Fig. 24: animate panel (upper left panels)

*Play button

— advance through the data model one month at a time

— button text will display “Pause” while the animation is running
*Reset button

— reset the data model month to the starting month, month zero.
eanimation slider

— use the slider to move forward and backward in time
*BACK and FWD buttons

— move one month in time either direction
refresh size_alpha button

— if the size or transparency of the scatter markers has been changed us-
ing the sliders on the size_alpha tab, use this to apply the changes to
the animation output for all months of the data model. Otherwise, only
the current month displayed will use the size and alpha selected by the
size_alpha sliders.

proposal_save panel
The proposal_save tab contains controls providing inputs related to list orderings and
datasets as follows:
* selecting and creating the datasets used by the editor tool

* preserving the results of the editing process

66 Chapter 5. user guide

seniority_list Documentation, Release 0.68

squeeze extra filters animate proposal/save

baseline:

standalone ¥

conditions:
pr M
proposal:
SAVE EDITED ORDER to proposals.xlsx
Pl v

Fig. 25: proposal_save panel (upper left panels)

*baseline dropdown

— select the dataset to use

*conditions dropdown

— select conditions to apply to proposal dataset

*

*

*k

*

‘none’: no conditions
‘prex’: prex

‘count’: count
‘ratio’: ratio

‘pc’: prex, count
‘pr’: prex, ratio

‘cr’: count, ratio

‘per’: prex, count, ratio

eproposal dropdown

— edit

* use the most recent edited dataset as the starting point for each suc-

the program automatically selects “edit” when a squeeze operation is

cessive list modification

performed

— <other dataset names>

display comparative or absolute results for other precalculated datasets

*SAVE EDITED DATASET button
Saves the following files to the dill folder:

5.3. editor tool

67

seniority_list Documentation, Release 0.68

— p_edit.pkl
— editor_dict.pkl
— ds_edit.pkl

*SAVE EDITED ORDER to proposals.xlsx button
Adds/updates an “edit” worksheet to:

— proposals.xlsx

center section

display attr:

spcnt v

CALC

Fig. 26: center section dropdown and buttons

edisplay attr dropdown

— select the dataset attribute for display within the main chart
*PLOT button

— show analysis results as determined by other control inputs
*CALC button

— calculate a dataset after a change of list order, conditional job assignment,
or proposal inputs

68 Chapter 5. user guide

seniority_list Documentation, Release 0.68

display panel

display sizefalpha gridibg howver density

use extra filters

at_retire_only

month oper month num
#| scatter
= T 0 T
poly_fit
mean ytype xtype
savgol diff v prop_s ¥

Fig. 27: display_panel (upper right panels)

The display panel contains checkboxes on the left and dropdowns on the right, further
divided into upper and lower sections.

upper left
filter checkboxes

suse extra filters
if checked, use additional filtering as selected on the “extra fil-
ters” panel

eat_retire_only
if checked, only show results for employees in last month of em-
ployment before retirement

lower left
display type checkboxes

sscatter
show results with scatter markers, one marker per employee,
color coded by employee group

*poly_fit
show a polynomial fit line for each group

*mean
show an exponential moving average line for each group

*savgol
show a smoothed Savitzky-Golay filter line for each group

upper right

5.3. editor tool 69

seniority_list Documentation, Release 0.68

month filter dropdowns

emonth oper
filter data model month using selected mathmatical operator

emonth num
select data model month for filtering

lower right

axis display type dropdowns

*ytype
—diff
select a differential or comparative result display relative to
baseline dataset

—abs
select a view of results from proposal or edited dataset only
(no comparison)

*xtype

—prop_s (proposed order, “static’’ or “starting”)
x axis shows original (data model starting month) position-
ing for results

—prop_r (proposed order, ‘“running”)
x axis shows updated position for selected data model
month

—pcent_s (proposed order, “percentage’)
same as “prop_s”, but showing list percentage vs list posi-
tion

—pent_r (proposed order, ‘“running percentage’’)
same as “prop_r”’, but showing list percentage vs list posi-
tion

size_alpha panel

The controls on this tab control the size and alpha (transparency) of the scatter markers
within the main chart.

70 Chapter 5. user guide

seniority_list Documentation, Release 0.68

display sizefalpha grid/bg hower density

S: A S A S A
Reset
‘ ‘ ‘ <5 S=
' ' ' < A A=
Fig. 28: size_alpha panel (upper right panels), number of sliders will vary with number of employee
groups merging
esliders
— the vertical sliders are color-matched to each employee group color
— each employee group within the data model will have a pair of sliders:
* “S” will adjust the size of the scatter markers on the main plot

“A” will adjust transparency (alpha) of the scatter markers

— the program will automatically create the proper number of sliders for
each case study

*Reset button
— set size and alpha sliders to default values
*<S and S> buttons
— decrease or increase the size of all markers
*<A and A> buttons
— decrease or increase the alpha value of all markers

Size/alpha adjustment occurs immediately on the main chart (no need to use plot but-
ton).

5.3. editor tool 71

seniority_list Documentation, Release 0.68

grid_bg panel

display size_alpha grid_bg
chart / edit_fill alpha

White v A0 v
grid / edit_line alpha

Gray A 20 v

Reset minor grid lines

howver density

#| chart bg/grid

edit zone

edit_line_width

10 v

Fig. 29: grid_bg panel (upper right panels)

echart bg/grid and edit zone checkboxes

— apply the “chart / edit_fill” or “grid / edit_line” color and alpha value to

the checked areas.

— the updates only occur when a color value or alpha value changes

— if “chart bg/grid” is checked, the top color dropdown controls the chart
background color and the bottom color dropdown controls the chart grid

color

— if “edit zone” is checked, the top color dropdown controls the color of
the fill between the edit zone cursors and the bottom color dropdown

controls the color of the cursor lines

echart / edit_fill dropdown

— select the color of the corresponding areas

egrid / edit_line dropdown

— select the color of the corresponding areas

ealpha dropdowns

— select the alpha (transparency) of the corresponding areas

*Reset button

— reset the colors, alphas, and edit_line_width to default values

eminor grid lines checkbox

— show minor grid lines when checked

72

Chapter 5.

user guide

seniority_list Documentation, Release 0.68

— color and alpha is locked to main grid line color and alpha as they exist
when checkbox is checked

*edit_line_width dropdown
— select the width of the edit zone cursor lines

Grid/bg adjustment occurs immediately on the main chart (no need to use plot button).

hover panel
The hover feature will provide selected data as tooltips when the mouse cursor is posi-
tioned over a scatter marker.

Use the “PLOT” button to refresh/include selected hover attributes within calculated
chart data. Ensure that the chart hover tool is active to display tooltips (click on hover
tool icon to display vertical blue line next to the icon).

display sizefalpha grid/bg howver density

hover ON # Iname
empkey

ldate

< retdate

spent

+ ylong
age

Fig. 30: hover panel (upper right panels)

shover ON checkbox
— turn the hover feature on and off

— unchecking this feature when it is not needed will slightly improve the
performance of the editor tool

*hover attributes checkboxes
— select the attributes to display as tooltips

— if the chart display attribute is the same as a selected hover attribute, the
hover attribute will not display as a tooltip

5.3. editor tool

73

seniority_list Documentation, Release 0.68

density panel

display sizefalpha grid/bg haver density

50 2.20

A 0.80

Fig. 31: density panel (upper right panels)

*S” slider
— controls the stripplot (density) chart marker size
*““A” slider
— controls the stripplot chart marker alpha (transparency)

Density adjustment occurs immediately on the density chart (no need to use plot but-
ton).

74 Chapter 5. user guide

seniority_list Documentation, Release 0.68

edit zone slider

edit zone slider

\

edit range values: 1545 .. 4105

edit vs standalone JOBP diff values

60 -

4.0

o
T + - — ~ ¥ T — l" T t T T T T t T - T T T t T — W T \ T

high cursor lines low cursor lines

Fig. 32: edit zone slider and chart cursor lines delineating the edit zone

The edit zone slider is used to select a section of an integrated list proposal. The se-
lected section is used by the “squeeze” routine when editing list order.

Each end of the slider range may be adjusted independently with a mouse click and
drag of an end handle or the entire range may be moved with a click and drag of the
slider section between the end handles.

The slider movement is used to position vertical cursor lines within the main and den-
sity charts in real time. If data for a future month is displayed within the main chart, fu-
ture list positioning data is converted for correct display within the density chart which
always displays data for the complete integrated list proposal. Therefore, the main chart
cursor lines and the density chart cursor lines will often be misaligned vertically. This
is normal due to different x axis scaling between the charts.

Precise adjustment of the cursor lines is available with the toggle buttons found on the
“squeeze” panel.

5.3.

editor tool

75

seniority_list Documentation, Release 0.68

5.3.2 using the editor tool

The editor tool is really an analysis tool and a corrective/creative tool in one. Datasets
which have already been generated can be analyzed in many ways, both by themselves
and compared to each other without any editing taking place. When equity outcome
distortions are apparent, the tool may be used to adjust input list order to reduce the
distortions. A new outcome dataset is created based on the modified input, which is in
turn available for analysis and further modification. The end result may be an entirely
new list proposal which has been created by the editor tool based upon outcome equity
measurements.

Common actions when using the editor tool include:
* apply various filters to datasets and then click the “PLOT” button to see the results

* set tooltips to “hover to discover” further information associated with each em-
ployee scatter marker - use the “PLOT” button to load

* select an “edit zone” using the edit zone slider and modify list order input by using
the “SQUEEZE” button, then calculate the outcome with the “CALC” button

* animate outcome datasets over time
* adjust colors and sizes of many of the chart elements in real time

» compare datasets or simply see the results for one dataset using the “ytype” se-
lection

* control the x axis display to show original list position or an updated future list
position

The normal workflow centers on editing the integrated list order using the controls on
the “squeeze” panel and checking the results using the “display attr” dropdown with
the “PLOT” button. With practice, the user will find that using the tool is relatively
easy and visually intuitive.

Datasets (models) for use within the editor tool are specified with the “baseline” and
“proposal” dropdown selections on the “proposal_save” panel.

If “edit” is selected from the “proposal” dropdown, and an edited dataset is not found
by the program, the program will default to the first of the integrated datasets listed
within the proposal_names.pkl file as a starting point. After the first “calculate” button
execution, the program will automatically use the newly created “ds_edit” dataset for
each subsequent operation.

76 Chapter 5. user guide

seniority_list Documentation, Release 0.68

attribute selection

display attribute selector

squeeze extra filters animate proposalisave \

sqz type emp group sqz dir

log A 2 A us>

squeeze: 28

>

edit range values: 2159 .. 4136

display attr

spent v

>
CALC

display size/alpha

S:2.20

A 0.80

gridibg hover

Fig. 33: the editor display attribute dropdown control

display attribute selector

edisplay attr dropdown

-select the dataset attribute to display within the main chart

This selection controls the metric (attribute) values which will be displayed within the
main chart. To display a different attribute, use the dropdown to pick another mea-
surement and then click the “PLOT” button. Possible attribute selections include list
percentage, career compensation, job levels, and others. Further filtering (see below)
is available to limit displayed results to a particular month, group, or other targeted
attribute(s). In the image below, note that to the right of the dropdown, a filter has been
set to show only employees in their retirement month (“ret_only” checkbox). The dif-
ferential chart is presenting information associated with the final month seniority list

percentage (“spcnt”) for all employees.

density

5.3. editor tool

77

seniority_list Documentation, Release 0.68

squeeze extra filters animate proposal_save display size_alpha qrid_bg hover density
) Val 1
Filter 1 Oper1 [use exira filters
v = v display attr: # at retire_only
| spent N month oper month num
Filter 2 Oper 2 Val 2 ¥ scatter
jobp == v 0 v
v == v [poly_fit
cat_order —
spent
Filter 3 Oper 3 ‘5 s & maan yiype xype
val3 F [savgol
v == v Jnum - 9 diff v prop.s ¥
mpay
cpay
edit range values: 2297 .. 4142 snum
e— L —
ylong

mlong
age
s_Imonths . +

Pl vs standalone SPCNT diff values

Fig. 34: attribute selection dropdown

basic filters

values at retirement

squeeze extra filters animate proposal_save display size_alpha grid_bg hover density
sqz type emp group sqz dir [use extra filters
log v 2 v u>> v display attr: ¥ at_retire_only
spont . . month oper month num
squeeze: 28 @ scatar > v 0 v
1 poly_fit
‘ | [mean yiype xtype

< || = SQUEEZE < s 0 savgol dift . prop.s ¥

edit range values: 2297 .. 4142

Fig. 35: retirement only and month filter controls (display tab)

values at retirement checkbox
ret only checkbox

— display only results for employees as measured in their final month of
working just prior to retirement

78 Chapter 5. user guide

seniority_list Documentation, Release 0.68

month filter
emonth operator dropdown

— select operator (such as ‘>=’ or ‘==") to be used with month num-
ber dropdown for display month filtering

emonth number dropdown
— select month number to be used for display filtering

The month filter is always active, except when the animation feature is in
use. Results for all months are displayed by selecting month ‘0’ combined
with the ‘>=" operator.

Month ‘0’ represents the start month for the data model.

A single month of data may be displayed by using the ‘==’ operator com-
bined with a selected month number.

The user may remove the display of pre-implementation information by set-
ting the operator to ‘>=" combined with the implementation month value.

extra filters

The main chart display output may be further filtered if the user wishes to measure
specific segments of the employee group(s). This filtering does not affect overall dataset
calculations - only the chart display output is filtered. Up to three display filters may
be used simultaneously. This extra filtering is in addition to any month or retirement
filtering from the display panel.

chart display use extra filters
checkbox

squeeze extra filters animate proposal_save \ display size_alpha grid_bg hover density
] Val 1]
Filter 1 Oper 1 use extra filters
A == v display attr: at_retire_only

spent v manth oper month num
Filter 2 Oper 2 Val 2 | scatter
== A 223 v
V| =) poly_fit
Filter 3 Oper 3 mean ytype xtype
Wal 3
savgol diff A propr ¥

vl = v
CALC

edit range values: 224 .. 420 \

chart display filter inputs

Fig. 36: the editor display filter controls

5.3. editor tool 79

seniority_list Documentation, Release 0.68

The additional filters will not work if the “filter”” checkbox is not checked. Example
filters are “ldate <= 1999-12-31", “jnum == 6", or “ylong > 30”

squeeze extra filters animate proposal_save display size_alpha grid_bg hover density
] Val 1
Filter 1 Oper 1 ¥ use extra filters
35 .
ylong v = v display attr. || at_retire_only
spent v month oper month num
Filter 2 Oper 2 Val 2 |# scatter
= v 0 v
[v || poly_fit
Filter 3 Oper 3 & mean ytype xtype
Val 3 || savgol
v == v

abs v props ¥
CALC

edit range values: 1787 .. 4258

p1 SPCNT abs values, with filter: [ylong >= 35]

D.0% mam—e = = = = o e = S me oo - T S PRI 7 IR vee .'W
] ¢ 3 .
. [»]
.
. L] "
7 L] L .
10.0% - .y . . ’
4 LY . 4 . " . .'.: ’.. L . » -l
et ® LY .
. - R . . N N .
w L] " . . o
200% . - . e SPPT R SY 1 R o . We
. [L ", L] L .
L . ., . o Wi e o . '-. .-... . R
- - l. " S5 : . ‘..I." : 1] b.' J ..." E
] SR L I
0% " ‘ O T L T e
] : . T § I A
. . .] arls
., : - SRS B
] ' P . L
40.0% ", .o . e
] e .
" 'l .. L] .
50.0% ., 1 .
1]
.I
EE
] .
B0.0% 'l
‘ — —— — : : —
G000 5000 4000 3000 2000 1000 0

Fig. 37: example filtering: seniority list percentage for employees retiring with 35 or more years of
longevity, absolute values

80 Chapter 5. user guide

seniority_list Documentation, Release 0.68

marker style and axis mode selection

display sizefalpha grid/bg hover density

use extra filters

#| at_retire_only

month oper month num
scatter o . 0 .
poly_fit
mean yiype xtype
Senan diff r prop s ¥
marker X and y axis
style display types

Fig. 38: marker style and axis type selection (display tab)

marker style selection

These checkboxes control the aggregate display type for the information pre-
sented within the main chart display. All styles differentiate between em-
ployee groups by color.

escatter checkbox
— show results as a scatter chart, one dot for each employee result
*poly_fit checkbox

— show the results as a smooth polynomial fit line, one line per
employee group

*mean checkbox
— show the results as an average line, one line per employee group
*savgol checkbox

— show the results as a smoothed line, calculated using a Savitzky-
Golay filter, one line per employee group

5.3. editor tool 81

seniority_list Documentation, Release 0.68

Changes to marker style are reflected immediately on the main chart (no
need to use plot button). More than one style may be selected at the same
time.

axis mode section

*ytype dropdown
Note: See further description and discussion in the ‘“differential display
mode” and “absolute display mode” sections below.

abs (absolute values)

— display the actual results for the input (proposal) dataset (non-
comparative).

diff (differential values)

— display the difference between the same selected dataset attribute be-
tween two specified datasets, normally standalone data and another cal-
culated dataset, which could be the results of a proposed integrated list
model or an edited model produced from the editor tool itself. Displayed
differences may be between any datasets - there is no requirement to com-
pare only with standalone data.

*xtype dropdown
prop_s

— an abbreviation for “proposal order, static (or starting)” and is likely to
be the most used setting for the display. The main chart displays results
with the employee group(s) ordered along the x axis according to the full
initial underlying integrated list, which may be a proposal submitted by
one of the parties or an edited list. All squeeze operations are performed
according to proposal order.

prop_r

— an abbreviation for “proposal order, running”. The main chart displays
results with the employee group(s) ordered along the x axis according to
the underlying integrated list as it would exist at a particular designated
month within the data model. With this display, employees advance po-
sition ranking as retirements or other factors allow, and those new list
positions are used for the x axis positioning.

pent_s

— “percentage, static”. Same as the “prop_s” display type, with list per-
centage displayed instead of static list order (seniority) number.

pent_r

— “percentage, running”. Same as the “prop_r” display type, with list per-
centage displayed instead of running list order (seniority) number.

82 Chapter 5. user guide

seniority_list Documentation, Release 0.68

edit vs standalone SPCNT diff values

1 L]
10.0%

-10.0%

-20.0%

-30.0%

T T t T T T T T T T T t T T T T t T T T T
2500 2000 1500 1000 500)

Fig. 39: editor chart ordered by static integrated list order for a future month

execution buttons

squeeze extra filters animate proposal_save display size_alpha grid_bg hover density
sz type emp group sz dir use extra filters
log v 2 v u=> v display attr: ¥ at_retire_only
spent v , month oper month num
squeeze: 28 B scaiter o= v 0 v

poly_fit
mean ytype xtype

= < = savgol diff r prop_s T

4 CALC

<
edit range values: 2297 .. 4142 \ /

execution buttons
Fig. 40: the editor execution buttons (the “SQUEEZE” button is located on the squeeze panel)

execution buttons
*SQUEEZE button

— executes a squeeze operation, using the input values from the squeeze
slider, the edit zone range slider, and the squeeze selection dropdown
boxes

*PLOT button

5.3. editor tool 83

seniority_list Documentation, Release 0.68

— uses the attribute selection, ytype and xtype selections, month and other
applicable filters to display data on the main chart. Plot inputs may be
changed between plot displays.

— all results correspond to the last calculated dataset, based on all non-
squeeze editor tool inputs.

— refreshes or creates the data source for hover tooltips

— resets the main chart edit zone cursor lines and slider position (Note: use
the bokeh “reset” tool button to reset chart scaling, further explained in
the “using the bokeh chart tools™ section below)

*CALC button

— calculates a new dataset based on the most recent squeeze operation and
displays the results on the main chart display.

It is not necessary to recalculate the dataset to view various attribute results associated
with a resultant dataset. Simply select the desired attribute and filter(s) and click the
“PLOT” button. Calculation using the “CALC” button is only required when actually
modifiying integrated list order after a squeeze operation.

squeeze extra filters animate proposal_save display size_alpha grid_bg hover density

Val 1

Filter 1 Oper 1 use extra filters
1985-12-31 .
Idate v <= v display attr #| at_retire_only
spent - month oper month num
Filter 2 Oper 2 Val 2 ¥ scatter
S= v 0 v
v — v poly_fit
Filter 3 Oper 3 mean yiype xtype
vals savgal diff v prop s ¥

v == v
CALC

edit range values: 2886 .. 4169

Fig. 41: items highlighted may be changed without recalculating - use the “PLOT” button

differential display mode

display sizefalpha gridibg hover density

use extra filters

Y

at_retire_only

month oper month num
#| scatter
= v W] v
poly_fit
mean yiype xtype
savgol diff v prop_s ¥

Fig. 42: differential ytype dropdown selection (display panel)

84 Chapter 5. user guide

seniority_list Documentation, Release 0.68

When a “diff” ytype (y axis) is selected, the difference between attribute calculations
from the proposal and baseline datasets will be displayed within the main chart area.
Distortions are generally identified by inequitable positive or negative deviation from
the norm, as represented by the zero line on the differential chart. By default, the norm
(baseline) is defined as the standalone outcome results, but any calculated dataset may
be set as the baseline for comparison.

p1 vs standalone CAT_ORDER diff values

1000 .

.. . . e - . ¥ -
-1000 whleoge L .. ot e ® e Y, v TR et
. . -

i . . -

| SR, ey
2000 4 . .-1:\;. . ..

_ g' . .

f——————— —————————t —_— — ———— —
6000 5000 4000 3000 2000 1000

Fig. 43: cat_order (job value) differential, proposal p1 vs. standalone

The chart below displays the seniority percentage difference at retirement between sam-
ple proposal “p1” and standalone outcomes. In this case, only the average differential
is displayed. This type of output is selected with the “mean” checkbox control. The
results reveal group 1 employees retiring at a better (more senior) combined seniority
list percentage than under projected standalone conditions, and group 2 experiencing a
large negative result under the “p1” proposal, as compared to standalone projections.

5.3. editor tool 85

seniority_list Documentation, Release 0.68

p1 vs standalone SPCNT diff values

10.0% ;

0.0% E- "R ——- B e e e S
-10.0% E
-20.0% E
-30.0% ;

-40.0% -

t T T T T t
6000 5000

T t T
4000

T t T
3000

T t T T T T t T T T T
2000 1000 o

Fig. 44: average differential values proposal “p1” vs. standalone seniority percentage at retirement

absolute display mode

display

size_alpha

use extra filters

#| at_retire_only

scatter
poly_fit
mean

savgol

grid_bg

month oper

hover density
month num
(4] v
xtype
prop_s ¥

Fig. 45: absolute mode dropdown selection (display panel)

When an “abs” ytype (y axis) is selected, the actual attribute calculation values from
the dataset defined by the “proposal” dropdown (“proposal_save” panel) will be dis-
played within the main chart area. Subsequent displayed values will be from the last

calculated edited dataset.

The chart below displays the actual seniority list percentage for all 3 groups within the
sample dataset at the time of retirement for each employee, smoothed with a Savitzky-
Golay filter (“savgol” checkbox on the “display” panel). These results are derived from
the same input as the average differential chart above. The results indicate group 2
employees on average will not advance up through the integrated seniority list as far as
employees from the other groups prior to reaching retirement under proposal “p1”.

86

Chapter 5. user guide

seniority_list Documentation, Release 0.68

pl SPCNT abs values

0.0%
10.0% E
20.0% E
30.0% E
40.0% E
50.0% E

60.0%

T t
6000

t
5000

T t
4000

T t T T t T T t T T T
3000 2000 1000 1}

Fig. 46: smoothed absolute (actual) values proposal “p1” seniority percentage at retirement

applying conditions

Job assignment conditions may be applied to datasets created with the editor tool func-
tion by selecting a condition from the “conditions” dropdown selection on the “pro-
posal_save” panel. Conditions associated with baseline datasets are incorporated and
applied when the datasets are constructed with the compute_measures.py script. Con-
ditions applied with the editor tool only apply to datasets created by the editor tool
(designated with the “proposal” dropdown selection).

The editor tool will apply job assignment conditions during the construction of the pro-
posed integrated dataset according to the cond_dict dictionary key, value pairs below,
with the “condition” dropdown selection as the key and the corresponding value as the
condition list to apply.

_{'

cond_dict

none': [],

prex': ['prex'],

count': ['count'],

ratio': ['ratio'],

pc': ['prex', 'count'],

pr': ['prex', 'ratio'l],

cr': ['count', 'ratio'],

pcr': ['prex', 'count', 'ratio']}

The conditional job assignment parameters are set within the settings.xlsx spreadsheet
input file, and are converted to a python dictionary file for use within the program
during the execution of the build_program_files.py script. See the “excel input files”
section for the definitions of the various job assignment conditions. Advanced users

5.3. editor tool

87

seniority_list Documentation, Release 0.68

may wish to directly access and modify dictionaries associated with conditional job
assignments located within the dict_settings.pkl file when experimenting with “what
if”” scenarios.

Results for a precalculated dataset may be viewed by using the “proposal” dropdown
selection and then clicking the “CALC” button.

Note: Job assignment conditions (as defined by the “conditions” dropdown selection)
will be included within calculated datasets produced and viewed with the editor tool.
When analyzing a previously calculated dataset, be sure that the selected conditions
match the conditions applied to the original dataset if results containing equivalent
conditions are desired. Conversely, the effect of particular job assignment conditions
may be analyzed by comparing a dataset without conditions to a baseline dataset which
included conditions.

squeezing

If one group is enjoying a windfall in all or only a section of the proposed list while
another group(s) is suffering a loss, the corrective action is to reduce the list position
of the windfall group relative to the other group(s), and then recalculate for further
analysis and adjustment.

squeeze extra filters animate proposal_save display size_alpha grid_bg hover density
sqz type emp group sqz dir use extra filters
log v 2 A us> v display attr: #| at_retire_only
spent v month oper month num
#| scatter
squeeze: 28 5= v 0 v

poly_fit
mean ytype Atype

savgol

> < > diff v prop.s v
S CALC

edit range values: 2297 .. 4142

Fig. 47: controls used when editing an integrated list

A slice of the differential display may be selected by using an interactive slider control
(labeled “‘edit zone™ above) which positions two vertical lines on the chart. The area
of the chart between the lines represents a section of the integrated seniority list (the
“edit zone™).

If a future month(s) filter has been applied to the data displayed, the selected section
will be internally converted to include all employees who have already retired prior to
the future month. This is done because all editing occurs to the initial integrated list
ordering and so that section selections and calculated results sync with the cursor lines
display. The lower density chart cursor lines are automatically corrected to show the
equivalent beginning month section.

88 Chapter 5. user guide

seniority_list Documentation, Release 0.68

Once the section of the list has been selected, an algorithm within the editor tool is then
utilized to “slide” or “squeeze” the members from one of the original employee groups
up or down the list. This action creates a new modified order, while maintaining proper
relative ordering within each employee group.

squeeze type squeeze
direction
squeeze extra filters animate proposalisave
50z type emp group sqz dir
log ¥ 2 v u == v
squeeze: 28
< = < >

employee group

Fig. 48: squeeze selectors (squeeze tab)

The squeeze algorithm works by one of two basic ways. The first method is a logarith-
mic move, the second is a position slide move.

The logarithmic method first selects all of the employees from the defined list section,
and sets aside the employees who are not part of the employee group to be moved. The
“emp grp” dropdown box selection sets the group to be moved. The employees from
the target group are then spread throughout the list section in a pattern determined by
the “sqz dir” (squeeze direction) and the value set with the “squeeze” slider control.
The logarithmic squeeze “packs” employees in one direction or the other so that there
is an ever-increasing density of employees filling list slots. The severity of the density
differential is set with the “squeeze” slider. If the squeeze is set to the lowest possible
value of 1, all employees from the target group are spread evenly within the selected
section.

The position slide method simply moves all employees from the selected employee
group a certain number of positions one way or the other. The number of positions to
move is set with the “squeeze” slider setting. If the requested move would cause target
employees to be moved outside of the selected list section, the employees will “pile

5.3. editor tool 89

seniority_list Documentation, Release 0.68

up” or be compressed at the edge of the section as necessary to stay within the section
boundary.

squeeze force / slide amount
slider control

squeeze extra filters animate proposal_save display size_alpha grid_bg hover density

sqz type emp group sqz dir use extra filters

log M 2 v us> v display atir ¥ at_retire_only
spent v + scatter month oper month num
squeeze: 28 »= v 0 v

poly_fit
mean yiype xtype

savgol diff v prop_s ¥

> < >
E——— CALC

edit range values: 2297 .. 4142

cursor line
slider control

Fig. 49: the editor slider controls and value readouts (squeeze tab)

With either squeeze method, employees from the other groups are reinserted into the
remaining slots within the selected integreated list section, in pre-squeeze order. The
net effect is that the groups trade positions while maintaining order within each group.

Following the squeeze operation, the horizontal list density chart is updated. This rep-
resents the new population density within the edit zone as a result of the squeeze. The
squeeze may be repeated differently if the density chart indicates an undesired pop-
ulation shift. The list density chart will be updated each time a squeeze operation is
performed. The resultant squeeze chart is always presented in integrated list order per-
spective.

When satisfied with the squeeze, the squeeze-modified integrated list order is then sent
back to the dataset creation routine by clicking the “calculate” button. A new dataset
is generated using the modified list order (and any selected conditions from the “pro-
posal_save” panel) and the results appear within the main chart display.

The edit process may be repeated many times, each time using the results of the previ-
ous operation. The interactive and iterative nature of the editor tool provides the user
with a method to rapidly reduce or eliminate observed equity distortions while “drilling
down” to possible list solutions.

90

Chapter 5. user guide

seniority_list Documentation, Release 0.68

using the bokeh chart tools

The editor tool was developed using the bokeh* plotting library. Many interactive
features are “built-in”” with bokeh, allowing the user to explore data much more fully
than with static charts. The editor tool incorporates a number of these interactive chart
tools to allow zooming, tooltip data display, and other features.

The chart tools are located on the right side of both chart displays.

A blue vertical line to the left of a tool icon means that the tool is active. A click on a
tool icon will activate/deactivate it.

&
box zoom

| wheel zoom
reset
undo
redo
save
crosshair

hover

Fig. 50: chart tool icons

The tool definitions (paraphrased) below are from the bokeh user guide® :

The pan tool allows the user to pan the plot by left-dragging a mouse across the
plot region.

The box zoom tool allows the user to define a rectangular region to zoom the plot
bounds to, by left-dragging the mouse across the plot region.

The wheel zoom tool will zoom the plot in and out, centered on the current mouse
location.

The reset tool will restore the plot ranges to their original values.
The undo tool allows to restore previous state of the plot.

The redo tool reverses the last action performed by undo tool.
The save tool allows the user to save a PNG image of the plot.

The crosshair tool draws a crosshair annotation over the plot, centered on the
current mouse position.

4 https://bokeh.pydata.org/en/latest/
4 https://bokeh.pydata.org/en/latest/docs/user_guide/tools.html

5.3. editor tool 91

https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/docs/user_guide/tools.html

seniority_list Documentation, Release 0.68

* The hover tool is an inspector tool.
Controlling main chart auto-scaling
* using the box zoom or wheel zoom will “lock” chart scaling

— this is helpful during animation, so that the chart is not continuously rescaling
to accommodate changing data values (can cause slow or jerky animation)

— hint: one small mouse wheel move forward and backward using the wheel
zoom tool will easily lock scaling

* click the reset chart tool icon to reset auto chart scaling

— a locked chart scale may mean that nothing is seen after changing a display
attribute and plotting until auto-scaling is reset

editor function inputs

The inputs described here are related to the actual editor function arguments, not the
inputs made through the various dropdown, check boxes, sliders, and buttons which
are displayed above the main chart.

The editor function inputs (arguments) are described within the function docstring,
accessed as described in the “notebook interface” section below. The inputs are related
to items concerning smoothing values for the various display options, and other sizing
and appearance options less commonly altered when running the editor tool.

To change one of the parameters, insert the key value definition within the partial
method after the editor function.

Example:

handler = FunctionHandler(partial(ef.editor,

plot_width=800, # change plot width

plot_height=450, # change main plot.
—height

ema_len=30 # adjust exponential,
—moving average length

))

The default settings for the optional inputs will be changed to the new values. The new
values will be used when the editor tool is created by the program.

92 Chapter 5. user guide

seniority_list Documentation, Release 0.68

editor output

The editor produces a dataframe containing the edited list order and a calculated dataset
based on that edited list order. A small python dictionary is also generated to allow the
tool settings to persist between iterations. All of these files are stored as pickle files
within the dill folder.

The list order dataframe is named p_edit.pkl. It is like other proposal files, contain-
ing an index consisting of employee numbers and one column representing list order
number.

The dataset produced from the editor tool is stored as ds_edit.pkl. It may be fully
examined and visualized in the same manner as other datasets. Edited datasets are not
automatically stored when the “CALC” button is clicked. To store an edited dataset,
the user must click the “SAVE EDITED DATASET” button on the “proposal_save”
panel.

The small dictionary file is named editor_dict.pkl. This file does exist with default
values prior to any editing and will be updated with actual editor tool settings as the
program is used.

The edited dataset, ds_edit.pkl, is only created/updated when the “calculate” button is
clicked. The other two files, p_edit.pkl and editor_dict.pkl, are created/updated every
time the “SQUEEZE” button or the “CALC” button is clicked.

5.3.3 summary

The editor is a fast and powerful tool, extremely useful for detecting relative gains
or losses or comparing actual outcome values for each employee group under various
proposals. It is able to dynamically adjust input list data based on calculated output
metrics. Resultant equity distortions may be identified, measured, and corrected in-
teractively. The editor tool offers tremendous flexibility to compensate as necessary
throughout the entire range of a combined employee population. This capability pro-
vides users with the opportunity to construct integrated seniority lists based on objec-
tive data while compensating for unique demographics existing within each employee
group list. Results are measurable and transparent. This is a huge distinction and pro-
found improvement from integrated list construction processes which employ uniform
list combination formulas, or other non-outcome-based techniques.

The seniority_list program provides the user with insight into the most important aspect
of seniority integration: the way a combined list will affect workers for the remainder of
their careers. The editor tool feature allows the user to create a solution foundationally
focused on fair, equitable, and quantifiable outcome for all workers.

Edited lists may be analyzed, confirmed, and adjusted with reference to the other tools
available with seniority_list, so that results are further validated and cross-checked.

5.3. editor tool 93

seniority_list Documentation, Release 0.68

Each case study will likely require a blending of analysis techniques to reach an equi-
table solution.

5.4 building lists

Processing scripts: list_builder.py, join_inactives.py

seniority_list was designed primarily as an instrument to discover the practical short-
and long-term results of various integrated seniority list proposals by calculating, mea-
suring, and comparing multiple attribute metrics, and to correct deficiencies by using
the editor tool feature. However, it may also be used as an initial integrated list con-
struction tool by utilizing a weighted-ratio, or “hybrid”, combination technique.

To build a hybrid list, import the /ist_builder module. Then run the build_list function
using the prepare_master_list function as the first argument, and lists of attributes and
corresponding weightings as the other arguments. The function produces a new list
ordering which can then be used as input for the dataset creation routine. The new
hybrid list order is stored in the dill folder as “hybrid.pkl”. The build_list function is
able to combine any number of employee groups simultaneously.

Example, with equal weighting applied to longevity and job percentage:

import list_builder as 1lb

1b.build_list(lb.prepare_master_list(),
['ldate', 'jobp'l],
[.5, .51

After a integrated list solution has been determined, a final list must be built which
reinserts inactive employees who were removed prior to the analysis process. This task
is accomplished with the join_inactives.py script.

The arguments required by the join_inactives.py script are:

* the name of the proposal dataframe containing the final order solution, without p_
prefix or file extension. The argument representing proposal dataframe p_p3.pkl
would set as “p3”.

* the “fill style” or cohort placement technique for the inactive employee insertion.

If the proposed list ordering does not contain the inactive employees, the “fill_style”
argument determines where the inactive employees will be placed within the combined
list relative to their same employee group active cohorts, just senior to the closest junior
cohort or just junior to closest senior cohort.

94 Chapter 5. user guide

seniority_list Documentation, Release 0.68

“ffill” - inactives attached to just senior same-group cohort
“bfill” - inactives attached to just junior same-group cohort

The result list/dataframe is stored as a pickle file with the name final.pkl (within the
dill folder) and as an Excel file with the name final.xlsx (within the case-specific folder
located in the reports folder).

Example usage from within a notebook cell:

%run join_inactives p3 ffill

This integrated list result including active and inactive employees in concert with with
any associated conditions represents the ultimate end goal of the seniority_list program.

5.5 notebook interface

This section will provide a basic primer to the Jupyter notebook, run through a short demo of
the program using the notebook, and provide guidance in the event that the program needs to be
reinstalled if it becomes inoperable for some reason.

From the Project Jupyter homepage*’:

“The Jupyter Notebook is a web application that allows you to
create and share documents that contain live code, equations,
visualizations and explanatory text.”

From the predecessor IPython notebook original webpage (the Jupyter notebook was originally the
IPython notebook):

“It is an interactive computational environment,
in which you can combine code execution, rich text,
mathematics, plots and rich media.”

46 http://jupyter.org//

5.5. notebook interface 95

http://jupyter.org//

seniority_list Documentation, Release 0.68

The name “Jupyter” is a combination of three programming language names, Julia, Python, and R.
It is actually capable of running code in over forty different languages, not just the three making up
its name.

seniority_list was designed to utilize the Jupyter notebook for running scripts, creating datasets,
and exploring and visualizing data.

The Chrome web browser is recommended for use with seniority_list for best performance.

5.5.1 notebook basics

starting the notebook

To run a notebook, open a terminal window or powershell and then type or copy and
paste:

jupyter notebook

A browser window will open containing a file listing. Navigate to one of the Jupyter
notebook files (ending with a .ipynb file extension, above) and click on the file name.
The notebook will open.

imports

Python files containing functions (modules) may be imported or loaded for use within
a notebook by using the “import” statement. Once a module has been imported, the
program “knows” about all the functions from that module. A module is imported and
assigned an alias, or shortened name as follows:

import matplotlib_charting as mp

Now, all of the plotting functions may be run from the notebook, and tab completion
is active. By typing the import name (“mp” in this case) followed by a dot, the user
may then hit the TAB key for a list of all of the functions available for use from the
imported module. The function may still be typed in manually or selected from the list
presented with the tab completion feature. Select from the list using the up and down
arrows and the ENTER key.

96 Chapter 5. user guide

seniority_list Documentation, Release 0.68

ZJupyter PpLOTTING wussawes 2]
File Edit View nsert Cell Kernel Widgets Help | Python [Root] O
B |+ 3% B B 4+ ¥ MW B Ccoue | CellToolbar | & | O

l In []: mp.

mp.age vs specnt
mp.build subplotting order

mp.Button
In []: mp.cf

mp.cm
In[]: mp.colors

mp.cond test
mp.diff range
In []: mp.differential scatter

Tn I 1-

Fig. 51: type mp. then TAB to reveal a list of functions available from the matplotlib_charting
module

running cells

The Jupyter notebook is a web interface which consists of a collection of ‘cells’ nor-
mally containing program code. The code may be executed with the results appearing
beneath the cell, if there is actual output from the code. To execute a cell, it must be
‘active’ (click on it). Then hit “Shift + Enter” on the keyboard to run it. There is also
a “run” button in the notebook header section that will work as well.

Sometimes the type of cell changes to something other than “code”, which will prevent
the execution of the cell. The type of cell may be changed back to “code” with a
dropdown box in the notebook header section.

There are numerous free tutorials and other educational materials on the web pertaining
to the use of the Jupyter notebook (formally known as the Ipython notebook). Here*’
is one video which may be of interest to new users.

running scripts within cells

Several of the program files are Python scripts used to perform major program tasks.
The work performed by the scripts is described in the “program flow” section above.
Below is a summary table containing required and optional arguments for each program
script.

47 https://youtu.be/HW29067qVWk

5.5. notebook interface 97

https://youtu.be/HW29067qVWk

seniority_list Documentation, Release 0.68

script required arguments | optional arguments
build_program_files | case name none

make_skeleton none none

standalone none prex
compute_measures | proposal name conditions
Jjoin_inactives order, fill none

e case name - the case study name (the name of the folder containing the input
files)

* prex - if a pre-existing job condition exists, use “prex” to direct the program to
apply a special job assignment condition as defined in the settings.xlsx input file

e proposal name - name of a proposed list ordering, such as “p3”, originally set
from worksheet names in the proposals.xlsx input file. Names of the proposals
may also be read from the proposal_names.pkl file within the dill folder.

* conditions - string name representing various conditional job assignment rou-
tines. Choices are:

['prex', 'ratio', 'count']

A “ratio” or “count” condition may be combined with the “prex” condi-
tion.

The “excel input files” section of the documentation contains descriptions of the
condition options. The parameters for the conditions are set through the set-
tings.xlsx input file.

* order - a dataframe formatted with an index of empkeys and a single column
with an order number, named either “idx” in the case of an original proposal or
“new_order” when using the output of the editor tool.

* fill - the fill style to use which determines how the inactive employees are rein-
serted into the integrated list. See the “building lists” section above.

A script may be run from a Jupyter notebook cell by inserting the special command,
“%orun”, before a script name, and then hitting “Shift + Enter” on the keyboard to run the
cell and execute the script. The following code will execute the compute_measures.py
script for proposal “p2” with a ratio count-capped condition applied. The first line,
“%o%time”, will provide the user with a print out of the amount of time it took to
complete the script task:

%%time
%run compute_measures p2 count

98

Chapter 5. user guide

seniority_list Documentation, Release 0.68

function docstrings

Click on function name within a cell, then Shift+TAB keyboard combination to reveal
the function docstring. Another way to do the same thing is to type the name of a
function followed by a question mark and then run the cell:

mp.quantile_years_in_position?

The information displayed may be expanded by clicking on the " or + symbols in the
upper righthand corner of the docstring window.

JUPYTEr PLOTTING wosares
File Edit View nsert Cell Kermel Widgets Help |=‘;.-'tl‘cr[3scct: (0]
B+ @& B v 0 mclcoue | CellToolbar | & & ©

Inese are ranaom sampies...
In []:|emp_list = [10011538, 10013767, 20011485, 30010789]

In []: mp.rows_of color(proposal, dsl, 6, ['eg'], cf.eg_colors,
inh rnlare rnle=1AA inh anlw=False inum=1
Signature: mp.rows of color(prop_text, prop, mnum, measure list, eg colors, jnum+ *
_colors, cols=150, eg list=None, job only=False, jnum=1, cell border=True, eg bo
rder color=".3", job border color='.8', chart style='whitegrid', fur color='.5",
In []: empty color="#ffffff', xsize=14, ysize=12, chart example=False)
Mp.qUartite years 1IN posITION(p, Us#, JOD (EVELS, U, CT.JOD SIS, proposat,
cf.proposal dict, cf.eg dict,
job_colors, flip x=True, flip y=False,
ysize=16, xsize=12, plot differential=True,
rotate=True, custom color=False, cm name='Setl’,
normalize vr scale=True. gain loss bo=True)

Fig. 52: click on function name, then Shift+TAB to reveal docstring, or type the name of the func-
tion with a question mark, then run cell

The docstrings contain descriptions, instruction, and input definitions for the many
program functions of seniority_list. The docstring may in fact be the best source of
information concerning the usage of a function.

The “program demonstration” section below has more information about function doc-
strings.

functions and variables

The function variables visible within the notebook cells are contained within parenthe-
ses following the function name. The order of the variables is important and must be
maintained for the function to operate. Other variables may not be displayed within the
notebook code cell and are defined with default values within the function definition
itself. It is likely that they may changed to another value by the user.

5.5.

notebook interface

99

seniority_list Documentation, Release 0.68

To view the full function code, a text editor may be used to open the appropriate module
and search for the function name. Be careful not to change anything within the module
to ensure proper program function. When using the notebook, function code may also
be viewed by using two question marks after a function name, as follows:

mp.quantile_groupby??

A window containing the function code will open in the lower section of the notebook.

If a change is made to any seniority_list program code, please submit a pull request
or send an email with the change as required by the licensing terms of the program.
Please see the “contact” section for the developer email address.

exiting the notebook

To discontinue use of the notebook, save all notebooks and close the notebook browser
windows. Then use the keyboard combination CTRL+C within the terminal to shut
down the notebook server.

5.5.2 sample notebooks

Four sample Jupyter notebooks are included with seniority_list.
* RUN_SCRIPTS.ipynb

STATIC_PLOTTING.ipynb

INTERACTIVE_PLOTTING.ipynb

REPORTS.ipynb

EDITOR_TOOL.ipynb

As mentioned on the installation page, the Jupyter notebook is included and installed
with the Anaconda scientific platform.

The RUN_SCRIPTS notebook creates many files and the datasets from the sample files
included with seniority_list, and will provide a feel for the capability and speed of the
program.

The STATIC_PLOTTING notebook runs many of the built-in plotting functions using
the datasets produced from the Run_Scripts notebook. This notebook provides a plat-
form for practice exploring, plotting, and analyzing datasets. The “STATIC” part of
the notebook title simply means that the chart output is not interactive.

The INTERACTIVE_PLOTTING notebook was added to the program in January of
2018. It offers chart output which can be modified within the notebook in real time
using sliders and dropdown selections.

100 Chapter 5. user guide

seniority_list Documentation, Release 0.68

The REPORTS notebook demonstrates the generation of summary statistical reports
for all program datasets, with output in spreadsheet and chart image formats. This
feature is described in the “quick report” section of the documentation.

The EDITOR_TOOL notebook will load the interactive editor tool. Please review the
“editing” section above for the powerful visualization and editing features available
with this function. This function will only run within the Jupyter notebook interface.

Note: The RUN_SCRIPTS.ipynb notebook must initially be run prior to
the other sample notebooks included with the program. The other notebooks
require the dataset files which are created by the RUN_SCRIPTS.ipynb
notebook.

5.5. notebook interface 101

seniority_list Documentation, Release 0.68

seniority_listfseniority_list/ - Mozilla Firefox

— seniority_list/seniority x

€) @ | localhost:8888/tree/project__/main_folder/ ¢ || search YT ¥+ A& » =
n—
— Jupyter Logout
Files Running Clusters

Select items to perform actions on them. Upload | New~- | &

~ @& [project__ [/ main_folder / dl [/ senlority_list / senlority_list

oD

3 dill

O excel

& EDITOR_TOOL.ipynb
& PLOTTING.ipynb
& REPORTS.ipynb

& RUN_SCRIPTS.ipynb

[__init__.py

O _wversion.py

| build_program_files.py
O compute_measures.py
O converter.py

O functions.py

O join_inactives.py

[list_builder.py

O make_skeleton.py

[matplotlib_charting.py
[reports.py

O standalone.py

Fig. 53: click on a file with the .ipynb file extension

102 Chapter 5. user guide

seniority_list Documentation, Release 0.68

RUN_SCRIPTS - Mozilla Firefox

CENGIWAIETE Il — RUN_SCRIPTS

@ | localhost 90% | @ ||Q search Ww B8 3 A 9 = =
Jupyter RUN_SCRIPTS (autosaves A Logout
File Edit View Insert Cell Kernel Widgets Help | Python [conda root] O

+ % @B 42 %M B C Makdown CellToolbar

RESTART kernel prior to running after any changes to config files...

import configuration and functions modules

In [1: %%time
import functions as f
import list_builder as 1b
import pandas as pd

build program files

dataframe pickle files: master, fur, sg(special group), active_each_month, order proposals, month percentage
dictionary pickle files: settings_dict, color_dict

pay data pickle files: pay_table_basic. pay_table_enhanced

pay data spreadsheet workbook: pay_table_data.xlsx (in reports folder)

note: add case study name after script name

In [1: %%time
%run build_program_files acme

skeleton

In [1: %%time
srun make_skeleton

standalone

standalone must be rerun after job level model change...

In [1: %%time
%srun standalone prex

calculate for each list order
(including list conditions, job count changes, and possible furlough recall schedule)

The cells below run the compute_measures script with proposals p1. p2. and p3. All scenarios include a "prex” or pre-existing job
assignment condition. The first case includes a ratio condition and the second case includes a count-ratio condition.

In [1: %%time
%srun compute_measures pl prex ratio

In [1: %%time
%run compute_measures p2 prex count

Fig. 54: the Jupyter notebook in the browser, with code cells waiting to be run

To run the notebook, click on “Cell” and then from the dropdown menu, select “Run
All”. If all goes well, the notebook will load the required data, run each section of code
(“cells”), and display results below each cell.

5.5. notebook interface 103

seniority_list Documentation, Release 0.68

- JUpyter RuN_SCRIPTS Last Checkpoint: Yesterday at 4:08 PM (autosaved)

File Edit View nsert Kemel Widgets

B |+ 3 th B 4+ ¥+

Run Cells

Run Cells and Select Below
Run Cells and Insert Below
Run All

nd functions modules

I .brepare_master_list, build li..

Run All Above
Run All Below

Cell Type

Current Outputs
All Output

Help

CellToolbar

Fig. 55: running the sample notebooks

To view the files which were created during the Run_Scripts notebook execution, use
a file explorer to view the contents of the program dill folder.

104

Chapter 5. user guide

seniority_list Documentation, Release 0.68

Name ~ Sjze Type Modified
case_dill.pkl 615 bytes Binary Mar 21
dict_attr.pkl 943 bytes Binary 14:15
dict_color.pkl 104.8 kB Binary 14:15
dict_job_tables.pkl 248.9kB Binary 14:15
dict_settings.pkl 5.3kB Binary 14:15
ds_p1.pkl 265.3MB Binary 14:15
ds_p2.pkl 265.3MB Binary 14:15
ds_p3.pkl 265.3MB Binary 14:15
last_month.pkl 79.8kB Binary 14:15
master.pkl 729.6 kB Binary 14:15
pay _table basic.pkl 14.5kB Binary 14:15
pay _table enhanced.pkl 26.8kB Binary 14:15
p_p1.pkl 120.9kB Binary 14:15
p_p2.pkl 120.9kB Binary 14:15
p_p3.pkl 120.9kB Binary 14:15
proposal_names.pkl 657 bytes Binary 14:15
skeleton.pkl 146.2 MB Binary 14:15
squeeze vals.pkl 1.2kB Binary 14:15
standalone.pkl 257.9MB Binary 14:15

Fig. 56: files created by Run_Scripts.ipynb

Note that the dataset files (starting with “ds”) are large at 260mb+. and are generated
from a sample list of approximately 7500 employees. The files depicted above were
generated utilizing the sample case study, “Sample3”, which includes approximately
7500 employees from 3 separate employee groups and 3 different integrated list pro-
posals.

There is one other file created, pay_table_data.xlsx, an Excel file stored in the reports
folder (not shown here).

The screenshot below is an example of matplotlib charts displayed within the sample
STATIC_PLOTTING notebook. Notice that just above each chart area there is a cell
which contains the plotting function which created the charts. The inputs to the func-
tions may be modified directly within the notebook and re-executed, creating new chart
results in seconds.

5.5. notebook interface 105

seniority_list Documentation, Release 0.68

PLOTTING - Mozilla Firefox

seniority io Z PLOTTING RUN_SCRIPTS

€ | © | localhost:8888/notebooks/projecc_ E1 80% | & ||Q Search

7 Jupyter PLOTTING (autosaved)

File Edit View Insert Cell Kemel Widgets Help

B+ % @B+ ¥ 0 B C o - | = || cermootbar

| Python [conda root] O

In [33]: | %%time
mp.quartile_bands_over_ time{'pl', 2, 'spcnt', cdict['Dark2'],

quartile ticks=False,

grid_alpha=.5, custom start=0,

p1, group 2 quartile change over time

cm_name='Paired', quartile_alpha=.

bins=20,

clip=True, year_clip=2040, kind='area',

6,

custom_finish=.55, xsize=18, ysize=8,
alt_bg_color=False, bg_color="#faf6eb')

ds_dict=ds_dict,

onginal percentage

result_pecnt
00-50%
5.0-10.0%
10.0- 15.0%
15.0-20.0%
20.0 - 25.0%
25.0 - 30.0%
30.0 - 35.0%
350 - 40.0%
40.0 - 45.0%
450 -50.0%
50.0 - 55.0%
55.0 - 60.0%
60.0- 65.0%
65.0-70.0%
70.0 - 75.0%
75.0 - 80.0%
80.0-85.0%
85.0 - 80.0%
90.0 - 95.0%
95.0-100,0%

2015 2020 2025 2030

CPU times: user 916 ms, sys: B ms, total: 924 ms
Wall time: 921 ms

2033

In [34]: %%time
mp.job_transfer('pl’', 'standalone', Z,
job_colors, job levels,
starting_date, job_strs, p_dict,
ds_dict=ds_dict,
custom_color=False, gb_period="M")

GROUP 2 Jobs Exchange
p1 compared to standalone

change in job count

Capt G4 B
Capt G4 R
CaptG3 B
Cap G2 B
Cap G3R
Capt G2 R
FIDG4B
FIOGAR
FIOG3E
FIOGZB
CapiG18
Fi0 G3R
FIOGZR

nnnn

Fig. 57: changing function inputs produces new results in real time. ..

106

Chapter 5. user guide

seniority_list Documentation, Release 0.68

5.6 program demonstration

This demo will walk through the steps involved with setting up and analyzing a new
case study. It is assumed that the program has been downloaded in accordance with
the “installation” section of this documentation.

Note: To run the demo using the included sample dataset, “Sample3”, no modifica-
tion of files is necessary - simply run the included notebooks in the order within the
description below.

The screenshots below were taken while using a linux operating system. The informa-
tion may be presented differently with other operating systems, but the actions remain
the same.

5.6.1 new case study
set up inputs

1. Navigate to the seniority_list folder within the main seniority_list folder with a file browser

5.6. program demonstration 107

seniority_list Documentation, Release 0.68

seniority_Llist

0OE §F D¢ B O

D@ E®B

Recent
Home
Desktop
Documents
Downloads
Music
Pictures
Videos
Trash

Network

Computer
LRS_ESP
Spinner
Windows8 0OS

Conneckt to Server

Name

el

dill

—
m excel

d
[

e
e

a_lifa i Hiq Hiq

]

@,

reports
build_program_Files.py
compute_measures.py
converter.py
EDITOR_TOOL.ipynb
functions.py
join_inactives.py
list_builder.py

make skeleton.py
matplotlib_charting.py
PLOTTING.ipynb
reports.py
REPORTS.ipynb
RUN_SCRIPTS.ipynb

standalone.py

"N

Size Type

19items Folder

1item Folder

1item Folder
31.9kB Text
15.5kB Text
7.0kB Text
49kB Text
149.2 kB Text
4.0kB Text
30.9kB Text
8.2kB Text
319.9kB Text
449kB Text
39.2kB Text
5.8kB Text
9.7kB Text

7.6kB Text

Fig. 58: the seniority_list folder within the main seniority_list folder...

2. Copy a case study folder within the excel folder (sample3 is fine)

Modified
20:53
19:56
20:53
19:56
19:56
19:56
19:56
19:56
19:56
19:56
19:56
19:56
19:56
19:56
19:56
20:55

19:56

eniority list senioriky

© Recent Name - | Sjize Type Modified
£ Home ﬁ sample3 4items Folder Feb 20
[m Desktop
@ Documents

Meavamlaade

Fig. 59: inside the excel folder, home of the case study input folders. ..
108 Chapter 5. user guide

seniority_list Documentation, Release 0.68

3. Paste the folder back into the excel folder and rename it t match the desired case study name
- this example will use “acme”

seniority_list seniority_list excel
® Recent Name 4 Sjze Type Modified
£1 Home ﬁ sample3 4items Folder Feb 20
[Desktop & sample3 (copy) 4items Folder Feb 20
[0 Documents

Fig. 60: the copied folder...

seniority list seniority list excel

® Recent Name ¥ Size Type Modified
£ Home g sample3 4items Folder Feb 20
[Desktop ® acme 4items Folder Feb 20
[@ Documents

s» Downloads

Fig. 61: the copied folder renamed for the case study...

4. Modify the contents of the Excel workbooks within the acme folder as appropriate, using the
“excel input files” section of the documentation as a guide

5.6. program demonstration 109

seniority_list Documentation, Release 0.68

® Recent Name ~ | Size Type Modified
£T Home X| master.xlsx 409.9kB Spreadsheet Feb 14
[Desktop E{J pay_tables.xlsx 11.6kB Spreadsheet Feb 10
[Documents E{J proposals.xlsx 368.3kB Spreadsheet Feb 20
~» Downloads E{J settings.xlsx 23.6kB Spreadsheet Feb 17
dd Music

Fig. 62: the four .xlsx files ready for case study customization

set up jupyter notebook

5. Open a Jupyter notebook and navigate to the seniority_list folder containing the 5 sample
notebooks (.ipynb files).

110 Chapter 5. user guide

seniority_list Documentation, Release 0.68

Home - Chromium

— Home
< C 1t | @ localhost:g888/tree ect_ /main_folde - en : | 4
— Jupyter Logout
Files Running Clusters
Select items to perform actions on them. Upload || New || &

0 |~ W8I project__ ! main_folder I dl | seniority_list | seniority_list MName ¢ Last Modified

[seconds ago

3 dill 7 minutes ago

3 excel 7 minutes ago

& EDITOR_TOOL.ipynh T minutes ago

& INTERACTIVE_PLOTTING.ipynb T minutes ago

& REPORTS.ipynb 7 minutes ago

& RUN_SCRIPTS.ipynb T minutes ago

& STATIC_PLOTTING.ipynb T minutes ago

O init__py 7 minutes ago

O _version.py 7 minutes ago

O build_program_files. py 7 minutes ago

O compute_measures.py T minutes ago

O converter.py T minutes ago

| editor_function.py T minutes ago

| functions.py T minutes ago

O interactive_plotting.py T minutes ago

O join_inactives.py 7 minutes ago

O list_builder.py 7 minutes ago

O make_skeleton.py T minutes ago

O matplotiib_charting.py T minutes ago

| reports. py T minutes ago

| standalone. py T minutes ago

Fig. 63: the seniority_list folder in the jupyter notebook

6. Open the notebooks by clicking on the titles - a new browser tab will open for each notebook

5.6. program demonstration 111

seniority_list Documentation, Release 0.68

RUN_SCRIPTS - Mozilla Firefox

seniority_list/se... x EDITOR _TOOL PLOTTING — RUN_SCRIPTS x

@ | localhost @ | |Q search b= 35 » =
— Jupyter RUN_SCRIPTS auosses) @ Logout
File Edit View nsert Cell Kemel Widgets Help | Python [conda root] O

E 4+ < B B A ¥ M E C | Markdown - CellToolbar

RESTART kernel prior to running after any changes to config files...

import configuration and functions modules

In []: | %%time
import functions as f
import list builder as lb
import pandas as pd

build program files

dataframe pickle files: master, fur, sg(special group), active_each_month, order proposals,
month percentage

dictionary pickle files: settings_dict, color_dict
pay data pickle files: pay_table basic, pay table enhanced

pay data spreadsheet workbook: pay_table_data.xlsx (in reports folder)

note: add case study name after script name

In []: %%time
%run build program files sample3

skeleton

In []: | %%time
%run make skeleton

standalone

standalone must be rerun after job level model change...

In []: =%=%time

Fig. 64: a browser tab for each notebook, with the RUN_SCRIPTS notebook displayed

7. Modify the script arguments in the notebook cells to match the new arguments which pertain
to the current case study.

112 Chapter 5. user guide

seniority_list Documentation, Release 0.68

—Jupyter RUN_SCRIPTS uosaved) @ Logou

File Edit View nsert Cell Kermel Widgets Help | Python [conda root] O

+ %< A B 4 ¥ MW B C uakdown CellToolbar
pay data spreadsheet workbook: pay table data.xlsx (in reports folder)

note: add case study name after script name

In [1: =%time

%run build program files

skeleton

In []: =%time
%run make skeleton

standalone

standalone must be rerun after job level model change...

In []: &%%time

%run standalone|prex

calculate for each list order
(including list conditions, job count changes, and possible furlough recall schedule)

The cells below run the compute _measures script with proposals p1, p2, and p3. All
scenarios include a "prex" or pre-existing job assignment condition. The first case includes a
ratio condition and the second case includes a count-ratio condition.

In []: %%time

%run compute_measures prex ratio

In []: &%%time

frun compute_measures prex count

In [1: =%time

%run compute measures prex

Fig. 65: case study marked red, conditions marked blue, proposal names marked green

e RUN_SCRIPTS notebook
— case study name for build_program_files script
— condition argument(s) for standalone and compute_measures scripts

— proposal names for the compute_measures script cells (one for each pro-
posal)

5.6. program demonstration

113

seniority_list Documentation, Release 0.68

e STATIC PLOTTING notebook

— proposal string inputs to match proposal name(s)

:...I Jupyter PLOTT|NG fautosaved) F Logout
File Edit View nsert Cell Kernel Widgets Help | Python [conda root] O
+ 2 B B A % MW B C cod | CellToolbar

age vs. list percentage for a specific month

In []: %%time
mnum = 8 # month oumber
mp.age_vs_spcn [1,2,3], mnum, eg colors,
p_dict, ret age,
ds_dict=ds dict,
#attrl='ldate’, operl='<=', vall='1997-12-31",

chart_example=False)

employees from each group holding a specific job level

In []: %%time
jnum = 4 # job number
job p = p[p.jnum==jnum]
mp.age vs spent(job p, [1,2,3], 42, eg colors,
p dict, ret age,
ds dict=ds dict, chart example=False)

In [1: =%%time
mp.multiline_plo't_by_emp '‘mpay', 'spcnt’, sample emp list,
1nl supale ret anes
Signature: mp.mu'Lti'Line_p'Lct_by_em measure, xax, emp_list, job levels, re *
t_age, color_list, job_str list, attr_dict, ds_dict=None, legend_fontsize=14,
chart_example=False)
In [1:| Docstring:
select example individual employees and plot career measure
from selected dataset attribute, i.e. list percentage, career
earnings, job level, etc.

inputs

In []: df (dataframe)

’ job_ievéls, 'ret_age,'
eg colors, job strs,
adict, ds dict=ds dict)

In []: %%time
mp.multiline_plot_by_eg 'jobp', 'lspcnt*, [1,2,3], job strs,
ob_Levels, eg colors,
ret age, adict, ds dict=ds dict,
#attrl='ldate’, operl='>=", vall
mnum=20, scatter=True, scatter size=7,
exclude fur=False, full pcnt xscale=True, chart example=False)

1£=01

In []: %%time
mp.multiline_plot_by_eg'cat_order'. 'lspent’, [1,2,3],
job_strs, job levels,
eg colors, ret age, adict,
ds_dict=ds dict, mnum=20, scatter=False,
exclude fur=False, full pcnt xscale=True)

Fig. 66: plotting functions inputs matching a proposal name

The functions have been coded so that they can accept the name of an integrated
list proposal as an input to represent a dataset calculated from that proposal. Con-

114 Chapter 5. user guide

seniority_list Documentation, Release 0.68

sequently, the inputs must match the proposal names which are part of the current
case study. The source of these names are the worksheet names within the pro-
posals.xlsx input file.

create program files and datasets

8. Run the RUN_SCRIPTS notebook

Jupyter RUN_SCRIPTS uosaves) A Logout
File Edit View nsert Cell Kernel Widgets Help | Python [conda root] O
+ ¥ A B+ b Run Cells CellToolbar

Run Cells and Select Below

Run Cells and Insert Below

RESTART kernel prior config files...
Run All Above

Run All Below
import configural lles

) Cell Type 4
In []: %%time
import functions a
import list builde Curent Outputs '

import pandas as p Al Output 4

build program files

dataframe pickle files: master, fur, sg(special group), active_each_month, order proposals, month percentage
dictionary pickle files: settings_dict, color_dict

pay data pickle files: pay_table_basic, pay_table_enhanced

pay data spreadsheet workbook: pay_table_data.xlsx (in reports folder)

note: add case study name after script name

In []: %%time
%run build program files sample3

skeleton
In []: %%time

%run make skeleton

standalone

Fig. 67: select the “Cell” button from the menu bar, then click “Run All”

* the contents of the dill folder will be cleared and the folder will then be repop-
ulated with program files and datasets pertaining to the “acme” case study.

* open the dill folder in a file browser to see the files populate the folder in real
time. ..

5.6. program demonstration 115

seniority_list Documentation, Release 0.68

analyze datasets

9. Run the REPORTS notebook

A statistical summary of proposed integrated list outcomes will be generated, in
the form of chart images and spreadsheets.

* ret_charts and annual_charts folders will be created within the reports
folder. Each of these folders will contain several other folders with many
basic chart images.

* ret_stats.xlsx and annual_stats.xlsx spreadsheet files will be created within
the reports folder.

10. Run the STATIC_PLOTTING notebook (with the correct proposal name argument(s)

* this will run the sample plotting functions with parameters set as they existed when the
program was downloaded.

11. Modify plotting function arguments as necessary for analysis (see docstrings)
* there are many options associated with most of the plotting functions

* view the docstrings as described in the section above to learn about the anal-
ysis possibilities with each function

The images below demonstrate a sample of possibilities with one plotting function,
quantile_groupby.

The function groups an initial list of employees into equally sized segments and
tracks each segment over time according to a selected metric. The result for each
segment is displayed as a line on the chart. This technique provides a quick view
into how employees at various levels within a seniority list fare under standalone
and integrated scenarios.

The program generates a global job ranking metric, termed ‘“‘cat_order” which
stands for category order. Standalone dataset “cat_order” results are normalized
with integrated results, allowing direct comparisons to be made between them.

The job ranking “cat_order” value is closely related to the “jobp” metric, which
reflects percentage of position within a job level, with the advantage of true scaling
for chart presentation. In other words, job levels with many jobs occupy a larger
part of the chart than job levels with few jobs.

The first image below is an example of the quantile_groupby function output dis-
playing the results for the “cat_order” measure for one employee group in a stan-
dalone scenario, as grouped into 40 quantiles.

116 Chapter 5. user guide

seniority_list Documentation, Release 0.68

%%time
cat order progression for the median of each 2.5% segment (40 quartiles)
of employee group 2 (standalone dataset)
mp.quartile groupby('standalone', [2], 'cat order', 48,
eg colors, job colors, sdict, adict,
ds_dict=ds dict, show job bands=False,
custom color=False,
through date='2037-12-31')

egs: [2] 40 quartile global job ranking by median

——

500 |
1000 |
1500

2000

000 -

2
[=]

global job ranking for each quantile
5
[=]
[=]

2014 2019 2024 2029 2034
date

Fig. 68: standalone dataset, employee group 2, category order (job ranking), 40 quantiles

Here is the same group, with the first argument changed to an integrated proposal,
“p1”. The computed scenario included a delayed implementation date, indicated
with the dashed vertical date line and the sudden change in the progression of the
lines.

5.6. program demonstration 117

seniority_list Documentation, Release 0.68

%5time
same as above, but as affected by integration proposal pl,
with a delayed inm gentation date

mp.quartile groupby('pl’,| [2], 'cat order', 48,
eg _colors, job colors, sdict, adict,
ds dict=ds dict,
show job bands=False, custom color=False,
through date='2037-12-31")

egs:[2] 40 guartile global job ranking by median

1000

1500

2000

o
[=]

3000 -

3500

a000

global job ranking for each quantile

4500
8000 7 7,
5500 1

8000 &

2014 2019 2024 2029 2034
date

Fig. 69: pl dataset, employee group 2, category order (job ranking), 40 quantiles

The “show_job_bands” option changed to “True”. A background job level hier-
archy is now shown, and the sudden changes in the progression of the chart lines
begins to gain context.

118 Chapter 5. user guide

seniority_list Documentation, Release 0.68

%%time

same as above, but with the addition of job bands

mp.quartile groupby('pl', [2], 'cat order', 40,
eg colors, job colors, sdict, adict,
ds dict=ds dict
show_job bands#True,| custom color=False,
through_date='2037-12-31")

egs: [2] 40 quartile global job ranking by median

— Capt G4 B
- CaptG4 R
Capt G3 B
1000 -
- Capt G2 B
1500
e
L.
- Capt G3 R
@ 2000
= o
5 - Capt G2 R
& 2500 ~
= -
3 7
E [~ F/O G4 B
1 -~
5 000 <
o e F/O G4 R
£ FIO G3 B
t 3500
B
=]
2
T 4000
8 FIO G2 B
=]

4500 S

Capt G1 B
5000 FIOG3R
5500 FiQ G2 R
Capt G1 R
FiQG1 B
FiOG1R
6000
2014 2019 2024 2029 2034
date

Fig. 70: p1 dataset, employee group 2, category order (job ranking), 40 quantiles, with job bands

Here, the number of quantiles input was changed to 250 to produce a much denser
presentation and a custom color spectrum was introduced, allowing a much clearer
visual presentation of the outcome.

5.6. program demonstration 119

seniority_list Documentation, Release 0.68

%time

cat order progression for the median of each .4% segment (250 quartiles)

of employee group 2 (pl dataset)

custom color example

mp.quartile groupby('pl', [2], 'cat order’
eg_colors, job colors, sdict, adict,
groupby method='median’,
ds dict=ds dict, show_job_bands{'l‘rue,
line width=1, custom color=True, chart style='whitegrid’,
show grid=True, cm name='Dark2',
through_date='2037-12-31")

egs

:[2] 250 quartile global job ranking by median

— — B ~ Capt G4 B
il Lol Capt G4 R
LI ; = Capt G3 B
500 .l ft
[|||l‘ |
1000 1 ||| fil
il Capt G2 B
AN
L | | ‘
1500 | —
— Capt G3R
@ 2000
E Capt G2 R
& 2500
=
Q
3 FIO G4 B
5 000
= FIO G4 R
= FIO G3 B
< 3500
el
2
2
T 4000
8 FIOG2B
[=2]
4500
Capt G1B
5000 FIOGIR
500 FIOGZR
Capt G1 R
FiO G1B
FIO G1R

|
|
6000 !
|
|
I

2014 2019 2024 2029 2034
date

Fig. 71: p1 dataset, employee group 2, category order (job ranking), 250 quantiles, custom_color,
with job bands

Every function has a list of all possible inputs and a description of those inputs
contained within what is known as a docstring (documentation string (text)). The
docstring may be viewed by clicking on the function name within a jupyter note-
book cell, and then pushing the Shift + TAB keys at the same time.

The function docstrings also contain an overall description of the task performed
by the function.

Docstrings may also be viewed within this website by clicking on the home button

120 Chapter 5. user guide

seniority_list Documentation, Release 0.68

and then scrolling to the bottom of the page and clicking the “Index” or “Module
Index” text. Full function code may be accessed by subsequently clicking on the
“[source]” text found after each function name. The top section of each function
code section will contain the docstring.

Below, a docstring has been accessed within the jupyter notebook. The first four
arguments in the quantile_groupby inputs correspond to the first four parameters
listed in the docstring (or more technically here, the Signature).

In [78]: S%%time

mp.quartile groupby{'pl', [2], 'cat order', 250,
eg_colors, job colors, sdic
groupby method='median’,
ds dict=ds dict, show job bands=True,
line width=1, custom color=True, chart style='whitegrid’,
show grid=True, cm name='Dark2’',
through date='2037-12-31')

Signature: mp.quartile_groupby'df‘ eq list, measure, guartilesl|eg_colors, band_colors, settin

gs dict, attr dict, groupby method='median’', xax='date', ds dict=None, through date=None, show
_job bands=True, show grid=True, plot implementation date=True, custom color=False, cm name='S
etl', start=0.0, stop=1.0, exclude=None, reverse=False, chart style='whitegrid', remove ax2 bo
rder=True, line width=1, bg color='.98', job bands alpha=0.15, line alpha=0.7, grid alpha=0.25
, title fontsize=14, tick size=12, label size=13, label pad=110, xsize=12, ysize=10)
Docstring:

Plot representative values of a selected attribute measure for each

employee group quartile over time.

Multiple employee groups may be plotted at the same time. Job bands may
be plotted as a chart background to display job level progression when
the measure input is set to "cat order".

Example use case: plot the average job category rank of each employee
quantile group, from the start date though the life of the data model.

The quartile group attribute may be analyzed with any of the following
methods:

[mean, median, first, last, min, max]
If the eg list input list contains a single employee group code and

the custom color input is set to "True", the color of the plotted

Anmetrila rarnd+ Tammaer w1l ke = cresdeom afF calaees Tha Fallammna Gnmodes

Fig. 72: function docstring accessed by clicking cursor on top of function name in the notebook
cell, then pushing Shift + TAB keyboard buttons

Further down within the docstring associated with this function are the input de-
scriptions. The descriptions provide information pertaining to the data type of
each input and sometimes a short explanation of the purpose or effect of the input.

5.6. program demonstration 121

seniority_list Documentation, Release 0.68

in

uts

df (dataframe)
Any long-form dataframe which contains "date" (and "mnum" if xax
input is set to "mnum") and "eg" columns and at least one
attribute column for analysis. The normal input is a calculated
dataset with many attribute columns.

eg_list (list)
List of eg (employee group) codes for analysis. The order of the
employee codes will determine the z-order of the plotted lines,
last employee group plotted on top of the others.

measure (string)
Attribute column name

guartiles (integer)
The number of quartiles to create and plot for each employee
group in the eg list input.

eg colors [list}
list of color values for plotting the employee groups

band colors (list)
list of color values for plotting the background job lewvel
color bands when the using a measure of 'cat order' with the
'show job bands' wariable set to True

settings_dict (dictionary)
program settings dictionary generated by the build program files
script

attr_dict (dictionary)
dataset column name description dictionary

groupby method (string)
The method applied to the attribute data within each quartile. The
allowable methods are listed in the description above. Default is
'median’.

xax (string)
The first groupby level and x axis value for the analysis. This
value defaults to "date" which represents each month of the model.
Alternatively, "mnum" may be used.

job_levels (integer)
The number of job levels (excluding the furlough level) in the data
model.

ds dict (dictionary)
A dictionary containing string to dataframes, used if df input
is not a dataframe but a string key (examples: 'standalone', 'pl')

through_date (date string)
If set as a date string, such as '2020-12-31', only show results
up to and including this date.

show_job_bands
If measure is set to "cat order", plot properly scaled job level
color bands on chart background

show _grid (boolean)
if True, plot a grid on the chart

plot_implementation date
If True and the xax argument is set to "date", plot a dashed
vertical line at the implementation date.

custom_color (boolean)
If set to True, will permit a custom color spectrum to be produced
for plotting a single employee group "cat order" result

cm_name (string)
The colormap name to be used for the custom color option

Fig. 73: beginning of input definitions for sample function

122

Chapter 5. user guide

seniority_list Documentation, Release 0.68

Note that the quantile_groupby function can present information relating to other
metrics, not just the “cat_order” measure. It can also display more than one em-
ployee group at a time. These are more options which are easily selected by chang-
ing the function argument values.

Global settings which affect the way the datasets are calculated are controlled by
values in the Excel input files. The function arguments only control how the pre-
viously calculated dataset information is displayed.

12. Run the INTERACTIVE_PLOTTING notebook
* select attributes to compare with the dropdown selectors
« use the slider and buttons to view data model results over time

* change the “proposal” variable as needed to explore other datasets

create or edit lists

13. Run the EDITOR_TOOL notebook

* modify list order to smooth distortions (see the “editing” discussion within the “program
flow” section)

generate final list

14. Run the join_inactives script

* reinsert inactive employees into the integrated list solution (see the “building lists” dis-
cussion within the “program flow” section)

5.6.2 changing program options or settings

Global settings include such things as basic vs. enhanced job hierarchies, delayed im-
plementation, and changes in job counts over time. Datasets must be recalculated when
any foundational parameter is modified.

To change a global program option, the input(s) within the Excel input file(s) must be
modified and the program rerun as follows:

Changing main program input options or other parameters:
1. Open the appropriate Excel input file.
2. Change the value
3. Save the Excel file

4. Return to the Jupyter notebook

5.6. program demonstration 123

seniority_list Documentation, Release 0.68

5. Restart the kernel:
* click on the “Kernel” button in the menu bar and select “Restart”
* then rerun notebook cells:
— click on “Cells” button in menu bar, select appropriate item
6. Rerun program (generate program files)

* recalculate the datasets, rerun the following scripts:

build_program_files

make_skeleton

standalone

compute_measures (for each proposal)
7. Restart other notebook kernels
* rerun all analysis to reflect updated source data

Restarting the kernel flushes all previously loaded variable values. When notebook
cells are rerun, the program will use any updated values derived from modified input
files. If the notebook is not restarted after changing input file values or recalculating a
dataset, it will not capture the updated values. The kernel must be restarted individually
for all open notebooks - restarting the kernel for the RUN_SCRIPTS notebook will
not restart the kernel for the STATIC_PLOTTING notebook, for example.

Plotting function arguments may be changed within a notebook cell and the cell rerun
without any other action (a kernel restart or file saving beforehand is not required or
desired).

5.6.3 saving/loading calculated case study data

The save_and_load_dill_folder function may be used to quickly switch between case
studies by loading previously calculated and saved program-generated files (including
calculated datasets).

saving

The “save” functionality will copy the current dill folder and save it in the
saved_dill_folders folder, named as <case study name>_dill_folder. The
saved_dill_folders folder will be created if it does not already exist. The function
will perform the save action when it is executed without any arguments:

import functions as f

f.save_and_load_dill_folder()

124 Chapter 5. user guide

seniority_list Documentation, Release 0.68

The case study name will be automatically determined by reading the dill/case_dill.pkl
file.

saving and loading

The “load” functionality will save the current dill folder, look for a saved dill folder cor-
responding to the string parameter provided to the “load_case” argument, and replace
the current dill folder with the dill folder to load.

f.save_and_load_dill_folder(load_case="sample3"')

If the specified load folder does not exist, the only action to occur will be saving the
current dill folder. The function will alert the user that the load operation failed.

Here is an example of attempting to load a folder which does not exist:

f.save_and_load_dill_folder(load_case='bad_case_name')

... will give:

'""sample3" dill folder copied to:'

'saved_dill_folders/sample3_dill_folder'

"Error >>> problem finding a saved dill folder with a "bad_
—.case_name" prefix in the "saved_dill_folders" folder."

The dill folder contents remain unchanged.
query for saved folders

The user may determine which case study dill folders are available to load by running
the function with the “print_saved” argument set to True. All saved case study names
will be printed and no other action will take place:

f.save_and_load_dill_folder(print_saved=True)

The print output will be in this format (the names of the case studies are examples
only):

'The saved dill folders available to load are:'
['sample3', 'acme_southern']

'Nothing changed, set print_saved input to "False" if.,
—you wish to save and/or load a folder'

5.6. program demonstration 125

seniority_list Documentation, Release 0.68

5.6.4 anonymizing input data

The parties involved with an integration may consider certain input data attributes to be
private and confidential, making it difficult or impossible to share the analysis results
with others. seniority_list includes a set of specialized functions designed to address
this issue.

Employee information - name, employee number, date of birth, date of hire, and
longevity date - may be replaced with substitute values to de-identify personal infor-
mation. Compensation tables may also be proportionally adjusted. This shielding of
personal information offers a potential solution to privacy or proprietary concerns.

Anonymizing dates should be avoided if possible to avoid deviations from the original
data model, due to the effect on retirements and other date-related measurements. The
random date adjustments are small, but will invariably affect the results, even if slight.

The anonymizing functions are located within the functions module.
* anon_master

* anon_pay_table

Warning: Even though the anonymizing functions are coded to create a copy of
original data, it is recommended to copy and save the entire excel folder outside of
the seniority_list file structure before applying any of the anonymizing methods.

Internally, the anon_master and anon_pay_table functions wuse the
“sheet_name=None” option of the pandas read_excel method to return a dictio-
nary of worksheets with worksheet name, dataframe as key, value pairs. The targeted
worksheet (now represented as a dataframe) is selected and updated with anonymized
values. Then the updated dataframe is written back to the appropriate worksheet
within the excel file.

Simply rerun the program to produce datasets and visualizations incorporating the
anonymized personal information.

anonymize master.xlsx
The aptly named anon_master function is used to anonymize the master.xlsx file. The
user may select to anonymize any or all of the following attributes:
¢ Jast names (Iname)
* employee numbers (empkey)

* birth date (dob)

126 Chapter 5. user guide

seniority_list Documentation, Release 0.68

e hire date (doh)
* longevity date (Idate)
A copy of the original master.xlsx file will be saved as master_orig.xlsx.

The function will generate new employee numbers (empkey) and last names (Iname)
by default.

All of the names in the “Iname” column will be replaced with randomly generated sub-
stitute strings, and all empkeys will be replaced with substitute integer values. Empkeys
will still begin will the appropriate employee group code number.

import functions as f

f.anon_master(<case name>)

Note: The <case name> placeholder in the code examples must be replaced with the
string name for the case study, such as “sample3” or “acme”.

To anonymize any or all of the date columns, set the “date” option to True.

f.anon_master(<case name>, date=True)

The default action is to adjust hire dates and longevity dates together from zero to
five days forward, and separately (with different random sequence) adjust birth dates
forward in the same fashion. These parameters are all adjustable with various inputs.

Another option related to randomizing date, “sampling”, is also available to the
user either through an option with the anon_master function, or by using the sam-
ple_dataframe function directly. Using the anon_master function, a sample, or subset,
of a master list (by rows) may be randomly selected for testing or other purposes by
setting the “sample” option to True. Sample size may be set with with a row count
(“n”) input or by a decimal fraction (“frac”) input. Below, the “frac” input will direct
the program to randomly select .2 or 20% of the rows in the master_df dataframe for
the output.

f.anon_master(<case name>, sample=True, frac=.2)

All or none of anonymizing options discussed above may be applied to a master
dataframe sample.

The modified excel file output from the anon_master function will be saved as ex-
cel/<case name>/master.xlsx.

5.6. program demonstration 127

seniority_list Documentation, Release 0.68

anonymize pay_tables.xIsx

The underlying compensation information for the data model may be replaced with
substitute data using the anon_pay_table function. The original hourly pay data may
be reduced or increased, proportionally or disproportionally. A copy of the original
pay date will be stored as pay_tables_orig.xlsx.

import functions as £

f.anon_pay_table(<case name>)

The “mult” input is a multiplier used to proportionally transform all of the pay rate data
at once. The “mult=.5" input below would produce modified pay rates equal to 50% of
the original rates.

f.anon_pay_table(<case name>, mult=.5)

The pay rates data may also be “randomized” in a disproportionate manner by setting
the “proportional” input to False. The data will be altered with a fixed algorithm.

f.anon_pay_table(<case name>, proportional=False)

reversion to original data

The copy_excel_file function includes a “revert” option which will delete an
anonymized file and replace it with the original data.

Restore the master.xlsx file:

f.copy_excel_file(<case name>,
'master’',
revert=True)

Restore the pay_tables.xlsx file:

f.copy_excel_file(<case name>,
'pay_tables',
revert=True)

128 Chapter 5. user guide

seniority_list Documentation, Release 0.68

5.7 program restoration

If for some reason, a portion of the code base is accidentally deleted or corrupted,
simply save all custom input files to a directory outside of the main seniority_list folder,
then delete the main seniority_list folder and reinstall the program. After reinserting
the input files in the proper locations, the program will be ready to operate again.

Specific files to preserve for reinsertion after reinstalling the program:
* entire case-specific folders within the excel folder which hold Excel input files

* any edited lists (p_edit.pkl) and/or datasets (ds_edit.pkl) from use of the editor
tool

All other files are quickly reproduced when the program is run.

5.7. program restoration 129

seniority_list Documentation, Release 0.68

130 Chapter 5. user guide

CHAPTER

SIX

EXCEL INPUT FILES

seniority_list is designed to produce comprehensive datasets reflecting the data
model(s) described by the user. The information and the data model description neces-
sary for this process is transmitted to seniority_list through simple spreadsheet work-
books.

While the Microsoft Excel program may be used to produce the workbooks, any spread-
sheet program may be used to work with seniority_list as long as it can produce .xIsx
files (such as LibreOffice Calc). The reference to “Excel” throughout this user guide
refers to .xlIsx files, not specifically the Excel program.

There are four Excel files required as inputs for each case study. They are located within
an appropriately-named folder, created by the user. There may be many different case
study folders within seniority_list ant any one time. The case study folders are located
within the excel program folder.

excel/<name_of_case_study>/

With our hypothetical case, this would translate to a folder and file as such:

excel/southern_acme/

The sections below will walk through each of the four Excel input files and will provide
detailed data and formatting requirements for each of them.

Note: The task of formatting input files as described below will be mag-
nitudes simpler if another case study folder is copied into the excel folder,
renamed to match the new case study name, and the workbooks therein mod-
ified as appropriate.

In the following image, the highlighted section within the sample3 folder shows the
excel files included with the program for the sample case study. The name of the sample
case study included with the seniority_list program is “sample3”. For our theoretical
case (“southern_acme”), the user would copy the sample3 folder, paste it back into

131

seniority_list Documentation, Release 0.68

the excel folder, and rename it “southern_acme”. The user would then open the Excel
workbooks in the southern_acme folder and modify the contents of the worksheets as
appropriate.

— build_program_files.py
— compute_measures.py
— converter.py
— dill
— case_dill.pkl
— dict _attr.pkl
— dict_color.pkl
— dict_job_tables.pkl
— dict_settings.pkl
— ds_p1.pkl
— ds_p2.pkl
— ds_p3.pkl
— editor_dict.pkl
— final.pkl
—— last_month.pkl
— master.pkl
— pay_table basic.pkl
— pay_table_enhanced.pkl
— p_pl.pkl
— p_p2.pkl
— p_p3.pkl
— proposal_names.pkl
— skeleton.pkl
— standalone.pkl
— editor_function.py
— EDITOR_TOOL.ipynb
— excel
L— sample3

master.xlsx
pay_tables.xlsx

proposals.xlsx
settings.xlsx
— functions.py
— INTERACTIVE_PLOTTING.ipynb
— interactive_plotting.py
— join_inactives.py
— 1list_builder.py
— make skeleton.py
— matplotlib_charting.py
— reports
L— sample3
final.xlsx
pay_table data.xlsx
— REPORTS.1ipynb
— reports.py
— RUN_SCRIPTS.ipynb
— standalone.py
L — STATIC_PLOTTING.ipynb

5 directories. 43 files

Fig. 1: tree view of seniority_list package, with the Excel input files highlighted

Note: All date inputs must be formatted as dates within each spreadsheet
input file. Right-click on any cell or group of cells containing dates and
select “format cells” or something similar and verify date format. If the
date inputs are actually formatted as text even though they look like dates,

132

Chapter 6. excel input files

seniority_list Documentation, Release 0.68

the program will not be able to generate the files needed to run the program.

6.1 master.xIsx

The master.xlsx workbook provides basic employee data to the program:
Employee data (for each employee)
* unique employee key (number)
* employee group membership
* last name
* date of birth
* date of hire
* longevity date
* special group membership
* furlough status
e work status (active or inactive)

* order within employee group

A B C D E F G| H 1 J
1 empkey |eg| Iname dob doh Idate sg | fur|line | eg order
~ 2 [10011102 1tooeyoo 1949-07-13 1973-02-26 1975-01-29) 0 O 1 1
~ 3 | 10010475 1rubelot 1949-02-05 1975-05-27 1975-05-27 0 0 1 2
4 | 10013096 1 yeloxid 1949-01-08 1977-01-18 1977-01-18 0 O 1 3
5 | 10012178 1 xayeaue 1951-06-07 1977-11-15 1977-11-15 0 O 1 4
"6 | 10014447 1finuceu 1951-10-17 1977-12-09 1977-12-09 0 0O 1 5
i 10014384 1 pevagai 1954-06-02 1978-01-12 1978-01-12 0 O 1 6
8 | 10012843 1 quniy 1953-05-14 1978-02-18 1978-02-18 0 O 1 7
~ 9 | 10014067 1gimed 1955-05-25 1978-03-01 1978-03-01 0 O 1 8
10 | 10010929 1 xovejiq 1955-06-20 1978-03-07 1978-03-07 0 0O 1 9
I 10014351 1yanag 1950-03-22 1978-03-12 1978-03-12 0 0O 1 10
12 | 10011974 1 eipieuv 1955-02-14 1978-03-21 1978-03-21 0 O 1 11

Fig. 2: master.xlsx file format example

master.xlsx contains only one worksheet and the name of the worksheet is unimportant.

master.xlsx contains information for the employees of all groups. The physical order
of the list is unimportant at this step, as long as the “eg_order” (employee group order,
or order within each group) column data value is correct, even if the list is not sorted
according to this value.

6.1. master.xlsx 133

seniority_list Documentation, Release 0.68

Note that since there is only one master list stored within the program, any employee
data discrepancies which may exist between the master list information supplied by the
various parties must be resolved as part of the data preparation phase.

Note: There is a function named compare_dataframes within the
list_builder.py script that is especially helpful to clean and discover any
discrepancies between the initial separate master data supplied by the em-
ployee groups.

6.1.1 master.xlsx format guide

Do not add any additional columns to the worksheet, such as a row count column. Only
include the columns shown above and described below, with the exact column names
in the first row, in lower case. Columns A, B and G through J should be formatted as
numbers (integers), column C as strings (text or general), and columns D through F as
dates (format YYYY-MM-DD).

The master.xlsx employee data worksheet must have one row for each employee and
columns of attributes for each employee as follows:

1. empkey (standardized employee number, integer)

Recommended format:
employee number + (10,000,000 * eg (employee group) number)

#23456 in eg 1 becomes #10023456
#23456 in eg 2 becomes #20023456

2.eg (employee group, integer)
Assign the same number (i.e. 1, 2, etc.) in this column to each member
of the same group. Always begin with the number one and use sequential
numbers for other groups. This format is important for proper operation of
other functions within the program.

3.Iname (last name, string)
lowercase

4.dob (date of birth, date format)
Date of birth is used to calculate retirement date using a retirement age input.
The program will correctly compensate for leap years.

5.doh (date of hire, date format)
Normalized initial class date

6.1date (longevity date, date format)
Date for pay longevity and/or non-furlough time calculations

134 Chapter 6. excel input files

seniority_list Documentation, Release 0.68

7.sg (special group, integer (1 or 0))
Employees with special job conditions are marked with a 1, others with a 0.
If there are no employees with special job conditions, the values for the entire
column should be zeros.

8.fur (furlough, integer (0 or 1))
Furloughed employees are marked with a 1, all others with a 0. If there are
no furloughed employees, the values for the entire column should be zeros.

9.line (line, integer (0 or 1))
Line (active) employees. Active employees are marked with a 1, others (sick
leave, supervisory, etc.) are marked with a 0. If there are no inactive em-
ployees (unlikely), the values for the entire column should be zeros.

10.eg_order (employee group order, integer)
A number that represents the correct list order within each employee group,
starting with 1 for each employee group. These numbers are independent of
a combined list number.

The information within master.xlsx is read by seniority_list and is stored within the dill
folder as a pandas dataframe, master.pkl. The dataframe structure matches the work-
sheet structure with the addition of a calculated retirement date column (“retdate’).

6.2 proposals.xisx

The proposals.xlsx workbook provides the following information to the program:
Integrated list data (for each proposal)
* order by unique employee number (empkey)

» proposal names (as set by worksheet names)

6.2. proposals.xlsx 135

seniority_list Documentation, Release 0.68

A | B |
1 order empkey
2 1 10011102
3 2 10010475
4 3 10013096
5 4 10012178
6 5 10014447
7 6 10014384
8 7 10012843
9 8 10014067
10 9 10010929
11 10 10014351
12 11 20010692
13 12 10011974
14 13 10014916
15 14 10013233
16 15 10010598
17 16 10014294
18 17 20011034
19 18 10011916
20 19 10011396
21 20 10012952
22 21 10013060
23 22 10014377
24 23 10010054
25 24 10012113
26 25 10013413
27 26 10014156
28 gz 10011656

Fig. 3: example list order, used to order skeleton file

The proposal orderings are derived from the proposed integrated lists supplied by the
parties. There is no limit imposed by seniority_list to the number of proposals which
may be included on separate worksheets.

Note: seniority_list may process list orderings from other sources (the editor tool and
the list_builder.py script). These features are discussed within the user guide.

6.2.1 proposal.xlsx format guide

The proposals.xlsx Excel file is a multi-sheet workbook, with each sheet containing a
different list ordering proposal. The names of the worksheets are incorporated into the
names of the resultant dataset names and will be the reference when working with the
various outcomes for analysis and plotting. Therefore, the names of the worksheets
should reflect the proposal therein. With our hypothetical integration study, the work-
sheets should be named “southern” and “acme” (or a shorter abreviation), reflecting
the proposals from each group. The proposal names should be limited to a maximum
of 10 characters. Short proposal names are preferred, because these names will be used
as inputs to many of the plotting functions.

The worksheets must contain at least one column with the header “empkey” (employee
number key, exact spelling, lower case) containing the unique empkeys in the proposed
order. The “order” column is not technically required for program operation but may be

136 Chapter 6. excel input files

seniority_list Documentation, Release 0.68

included as a user convenience with no detriment to program operation. The “empkey”
column should be formatted as a number (integer), not text.

Each proposal must contain the same list of empkeys (employee numbers), reflecting
the active employees as determined by the master.xlsx file “line” column.

6.3 pay_tables.xlsx

pay_tables.xlsx provides the following information to the program:

Compensation

Jobs

pay rate tables for each basic job level, employee longevity, and
contract year category

pay rates for an interim period

number of modeled pay hours per month for each job level, basic
and enhanced

basic-to-enhanced job conversion data

* job level text descriptions

The program uses the data supplied from the pay_tables.xlsx workbook to create opti-
mized compensation lookup files which are used when the datasets are generated. The
data is also used to create a multi-sheet Excel workbook containing computed monthly
pay tables and job level hierarchy tables. This workbook, pay_table_data.xlsx, is writ-
ten to a case study folder within the reports folder. The workbook format permits the
computed pay data to be reviewed by the user.

The pay-related files are created when the build_program_files.py script is run.

6.3. pay_tables.xlIsx 137

seniority_list Documentation, Release 0.68

build program files.py
compute measures.py
converter.py

dill

case dill.pkl
— dict_attr.pkl
dict color.pkl
dict job tables.pkl
dict settings.pkl
ds pl.pkl
ds p2.pkl
ds p3.pkl
last month.pkl
master.pkl
pay_ table basic.pkl
pay table enhanced.pkl
P_pPl.pPKL
p_p2.pkl
p_p3.pkl
proposal names.pkl
skeleton.pkl
squeeze vals.pkl
standalone.pkl
— EDITOR TOOL.ipynb
— excel
L— sample3
master.xlsx
pay_ tables.xlsx
proposals.xlsx
settings.xlsx
functions.py
join_inactives.py
list builder.py
make skeleton.py
matplotlib charting.py
PLOTTING.ipynb
reports
L— sample3
L— |pay_table_data.xlsx |
REPORTS.1pynb
reports.py
RUN_SCRIPTS.ipynb
standalone.py

5 directories, 38 files

Fig. 4: files produced from pay_tables.xlsx data

basic vs. enhanced job levels

seniority_list is designed with the capacity to handle two different job hierarchy
methodologies.

The first method is a basic mode which assumes a “stovepipe” or linear movement
upwards through the distinct job levels, each of which have a defined compensation
rate and a uniform number of monthly pay hours within each job level.

The second method is the “enhanced” mode which offers additional job level layers for
the program data model when it is appropriate. This would occur when contractual or
other provisions provide for some workers to receive less monthly pay hours than other

138

Chapter 6. excel input files

seniority_list Documentation, Release 0.68

workers at the same compensation level.

Note: It is not a requirement to incorporate “enhanced” job levels within the model
when they do not exist for the industry case or are not desired. In that case, the “en-
hanced_jobs” value on the “scalars” worksheet within settings.xlsx should be set to
“False”.

For example, assume that an industry contract defines five separate job levels, rang-
ing in hourly pay from $20/hour to $100/hour, and assumes each worker will be paid
160 hours/month. In this case, the “basic” mode of job hierarchy is appropriate and
completely sufficient to model job and compensation projections.

However, if that industry contract further defines that some workers at each level will
work and be paid 120 hours/month, this doubles the number of job levels to be con-
sidered in an integration analysis, because each job level contains two categories of
monthly pay hours. It also complicates the career progression model, since employees
will likely prefer positions based on total compensation amounts, not just hourly rate
of pay.

The job hierarchy mode is selected via the “enhanced_jobs” value (True or False) within
the settings.xlsx workbook (“scalars” worksheet).

6.3.1 pay_tables.xlsx format guide

The pay_tables.xlsx workbook contains compensation data on two worksheets with
specific names, in lower case:

*“rates”
formatted hourly pay rate table for basic job levels including con-
tractual pay changes and longevity increments

*hours”
small table containing basic and enhanced job level hours per
month and descriptive job codes

rakes hours

Fig. 5: worksheet tabs within the Excel pay_tables.xlsx workbook

6.3. pay_tables.xlIsx

139

seniority_list Documentation, Release 0.68

rates

The pay table “rates” worksheet has a straightforward formatting layout. The user must
create the the worksheet from contractual pay information. There is one pay data work-
sheet for each case study.

A | B | ¢ | b | €E | F | e [nw] [0 [k[v T M [N]
1 year | jnum | 1 2 3 | a4 | 5 | s 7 | 8 | 9 [10 11 | 12 |
2 | 2013.0 1 2532 120.24 121.21 12217 123.14 12410 125.07 126.03 127.00 127.97 12893 129.90
3 | 2013.0 2| 2532 102.21 103.02 103.84 104.66 105.48 106.30 107.12 107.94 108.76 109.58 110.40
4 | 2013.0 3 2532 94.89 9565 96.41 97.17 97.93 98.69 99.45 100.21 100.97 101.73 102.49
5 | 2013.0 4 2532 60.69 73.18 7497 7678 78.61 80.46 82.32 84.84 86.75 88.04 B8.70
6 | 2013.0 5 2532 51.68 62.27 63.79 6533 66.88 68.45 70.03 72.17 73.79 74.88 75.44
7 | 2013.0 6 2532 48.02 57.85 59.26 60.68 62.12 63.58 65.05 67.03 6853 69.55 70.06
8 | 2013.0 7 2532 64.80 6541 6593 6644 66.96 67.48 67.99 6851 69.03 69.54 70.06
9 | 2013.0 8 2532 33.02 39.71 4066 4163 42.61 43.60 4460 4594 46.97 47.66 48.01
10 | 2014.0 1 2532 129.77 130.81 131.85 132.90 133.94 134.98 136.03 137.07 138.11 139.15 140.20
11 | 2014.0 2| 2532 110.29 111.17 112.06 112.94 113.83 114.71 11560 116.48 117.37 118.25 119.14
12 | 2014.0 3| 2532 102.39 103.21 104.03 104.85 105.68 106.50 107.32 108.14 108.96 109.78 110.60
13 | 2014.0 4 2532 6546 78.95 80.88 82.83 8481 86.80 88.82 9153 93.60 94.99 095.70
14 | 2014.0 5 2532 5572 67.16 68.80 70.46 72.14 73.83 75.54 77.85 79.60 80.78 81.38
15 | 2014.0 6 2532 51.77 6239 6391 6545 67.00 6857 70.16 7230 73.92 75.02 75.58
16 | 2014.0 7 2532 69.99 70.55 71.11 7167 7223 72,78 73.34 7390 7446 75.02 75.57
17 | 2014.0 8 2532 3557 4279 4382 4487 4593 46.99 48.07 4953 50.63 51.38 51.76
18 | 2014.1 1 15436 155.61 156.87 158.12 159.37 160.62 161.88 163.13 164.38 165.63 166.88 168.13
“19 | 2014.1 2| 130.28 131.38 132.44) 133.49 13462 135.66 136.66 137.78 13875 140.23 141.72 143.18
20 | 2014.1 3| 12346 124.46 125.46 126.48 127.51 128.52 129.53] 130.55 131.55 132.64 133.75 134.84
21 | 2014.1 4 4518 83.78 97.86 100.20 10257 105.13 108.03 110.48 111.66 113.16 114.18 115.20
22 | 2014.1 5 45.18 70.82 82.68 84.66 86.70 88.85 91.26 93.37 9432 95.86 97.02 98.15
23 | 2014.1 6 4518 67.12 78.35 80.23 8215 84.19 86.52| 88.50 89.44 90.69 91.58 02.46
24 | 2014.1 7 8150 82.11 82.78 83.44 84.06 84.74 85.38 86.05 86.70 87.37 88.04 88.68
25 | 2014.1 8 4518 4518 51.84 53.07 5430 55.65 57.17 58.46 59.07 59.87 60.42 60.93
26 | 2015.0 1 158.96 160.24 161.54 162.83 164.12 165.41 166.70 167.99 169.28 170.56 171.85 173.14
27 | 2015.0 2| 13416 135.28 136.38 137.46 138.63 139.60 140.73| 141.88 142.88 144.40 145.94 147.44
28 | 2015.0 3| 127.13 128.16 129.19 130.24 131.30 132.34 133.38 134.43 13547 136.59 137.72 138.85
29 | 2015.0 4 4650 86.27 100.76 103.17 105.61 108.25 111.23] 113.77 11497 116.52 117.57 118.62
30 | 2015.0 5/ 46.50 72,91 85.12 87.16 89.27 91.48 93.97 96.14 97.11 98.70 99.89 101.07
731 | 2015.0 6 4650 69.10 80.66 82.60 84.58 86.68 89.08) 91.12 92.09 93.38 94.29 05.20

Fig. 6: pay_tables.xlsx format example, “rates” worksheet

The worksheet can be thought of as employee pay rate tables for multiple years, stacked
together forming one table. Within each contractual year block, the pay rates for the
various job levels are positioned vertically from highest to lowest and longevity pay
increases are positioned horizontally, lowest to highest.

All columns are formatted as numbers. The header row contains a “year” column and a
“jnum” column (both lower case), and other columns with integer headers representing
the longevity year pay steps (1 through the top of scale year).

The data in the year column is a float type (decimal number) representation of the
applicable contract pay year. The year 2018 would be represented as “2018.0”.

The year column may include one or more exception values (“2014.1” in the image
below) which allow for a temporary or interim pay scale(s) if they exists. An in-
terim pay scale might exist for a certain transitional time period such as a partial year
at new contract pay rates. A pay exception year value and duration is set using the
“pay_exceptions” worksheet in settings.xlsx. Simply adding .1 to the year in which a
pay exception occurs will allow for the fastest follow-on indexing calculations which
utilize this data.

140 Chapter 6. excel input files

seniority_list Documentation, Release 0.68

The data within the “jnum” (job number) column represents the different job levels
within the data model. A job level of 1 represents the highest paid position, with sub-
sequent incremental job level numbers representing job levels with decreasing com-
pensation rates. The program will automatically insert an additional job level after the
lowest job level to represent employees who are furloughed (or who could become fur-
loughed in various modeling scenarios) when the Excel file is read. A model with 8
active job levels will be modified to have job numbers 1-9 in the “jnum” column for
each contract year in the “year” column, with job number 9 representing furlough with
no pay. This can be reviewed by examining the pay_table_data.xlsx file within the
reports folder after running the build_program_files.py script.

The year longevity columns (integers) hold the hourly compensation data for employ-
ees with various levels of service with the enterprises. Column 1 would be the rates
for employees working in their 1st year of service, column 5 would contain the rates
for employees working in their Sth year, etc. up to the maximum longevity scale. Em-
ployees with more years than the maximum longevity scale are capped at the maximum
longevity rates.

Note that the year column has repeating row values for each of the job levels. Also,
the pay exception built into this pay table is evident with all the rows with 2014.1 in
the “year” column. The user may directly examine the Excel files included with the
program for further clarity (excel/sample3/pay_tables.xlsx).

hours

This worksheet supplies the program data model with the number of monthly pay hours
applicable to each job level. In other words, by inputing data into this table, the user
sets the average number of pay hours to be allocated within each job level, for both
the basic (no full- and part-time pay within job levels considered) and the enhanced
(including full- and part-time jobs within job categories) job data model options.

A B C D E F G
1 jnum basic_hours full_hours part_hours full_pcnt jobstr
2 1 81 85 74 0.600 Capt G4
3 2 81 85 74 0.625 Capt G3
4 3 81 85 74 0.650 Capt G2
5 4 81 85 74 0.600 F/O G4
6 5 81 85 74 0.625 F/O G3
7 6 81 85 74 0.650 F/O G2
8 7 81 85 74 0.650 Capt G1
9 8 81 85 74 0.650 F/O G1

Fig. 7: pay_tables.xlsx format example, “hours” worksheet

The “jobstr” column (“job string”) is used by the program to provide a short job level
description in text form for various chart legends and titles. If an enhanced model

6.3. pay_tables.xlIsx 141

seniority_list Documentation, Release 0.68

is selected, designated full- and part-time suffixes will be added to the enhanced job
descriptions appropriately. The suffixes are specified by the user through the “en-
hanced_job_part_suffix” and “enhanced_jobs_full_suffix” values provided through the
“scalars” worksheet within the settings.xlsx workbook. The enhanced job strings may
be viewed on the “enhanced ordered” worksheet within the pay_table_data.xlsx file
within the reports/<case study> folder after the program files have been constructed.

The “jnum” column (job number) contains the integer code value for each non-furlough
basic job level within the data model, in sequential order. These job numbers corre-
spond to the job numbers in the “jnum” column in the “rates” worksheet.

The “basic_hours” column contains a user-specified number of monthly pay hours for
each job level. The number of pay hours may vary for different job levels. Calculated
values derived from this column are utilized by the program when the user specifies a
basic, non-enhanced data model, by setting the “enhanced_jobs™ option to “FALSE”
on the “scalars” worksheet within the settings.xlsx workbook.

The “full_hours”, “part_hours”, and “full_pcnt” columns contain data pertaining to
enhanced job models. As in the “basic_hours” column, the values in each of these
columns may vary from job to job, as required.

e full_hours - the number of monthly hours within a job level for “full-time” em-
ployees

e part_hours - the number of monthly hours within a job level for “part-time” em-
ployees

* full_pcnt - the percentage of all jobs within a job level to be allocated as “full-
time”. The remaining percentage of jobs will be allocated as “part-time”.

Even if a basic data model is selected by the user, the above columns must remain in
place to prevent a calculation error, though the enhanced job model inputs will not be
used for further program analysis.

6.3.2 job level hierarchy

seniority_list uses a job-level hierarchy based on compensation. This hierarchy deter-
mines the order of job assignments and employee compensation throughout the entire
data model.

A basic or non-enhanced data model assumes that the proper value order of job levels
is as supplied by the user through the pay_tables.xlsx input workbook, with job level 1
the best-paying and most desirable, and therefore, most “senior” job level.

However, it is possible that some job level(s) may compensate workers proportionally
more or less in certain pay-scale longevity years as compared to other job levels. This
means that independent sorts of job level compensation for all contract years and/or

142 Chapter 6. excel input files

seniority_list Documentation, Release 0.68

longevity steps could show slightly different orderings when the underlying job level
pay rates vary enough over contract years or, more likely, contract longevity steps.

When an enhanced model is used, additional discrepancies in compensation sorts may
be introduced, when the issue above is combined with the more numerous enhanced
job levels.

A B C D = & G H 1 J K L M N (o]

1 year jnum 1 2 3 4 5 6 7 8 9 10 11 12k
102 100 2017 16 3645 3645 4184 4283 4383 4493 4615 4720 4769 4832 4877 4919
103 | 101 2017 17 0
104 102 2018 1]

105 103 2018 2

106 | 104 2018 3

107 105 2018 4

108 | 106 2018 5

109 107 2018]

110 108 2018 7

111 109 2018 8|

112 110 2018 9

113 111 2018

114 112 2018

115 113 2018

116 114 2018

117 115 2018

118 116 2018

119 | 117 2018

120 118 2018 0
121 119 2019 1 15195 15318 15443 15566 15689 15813 15936 16059 16182 16305 16428 16552

Fig. 8: uneven enhanced job level sort (highlighted with color conditional formatting for clarity),
primarily job levels 11 and 14 for longevity steps 1 through 6, within contract year 2018. In this

case,

the chosen sort index is contract year 2018, longevity step 7 (outlined).

Because of this possibility it is recommended that the user carefully examine the
“basic_ordered” and “enhanced_ordered” worksheets within the pay_table_data.xlsx
workbook, located within reports folder. This workbook is automatically generated by
seniority_list when the build_program_files script is run. These worksheets display
the job level hierarchy created by the program, according to a compensation sort for a
particular contract year scale and contract longevity step. These values are set and ad-
justed by the user through the “pay_table_year_sort” and “pay_table_longevity_sort”
value inputs in the “scalars” worksheet within the sertings.xlsx input excel file. A
contract year and longevity step should be selected which provides the best overall
compensation sorts for the life of the model as indicated by the information in the
pay_table_data.xlsx each time new program files are generated.

The job level sorting algorithm will ensure that the order of jobs will be the same in
all contract years and longevity steps throughout the data model. If the user wishes
to adjust the pay level sort indexing, the settings.xlsx workbook must be saved after
inserting the new values and the build_program_files script must be rerun. The results
of this procedure will include replacing the pay_table_data.xlsx file with a new file
containing the updated results.

Job compensation sort variation will not exist in all case studies, and in fact is likely
to be an unusual situation. When it does exist, seniority_list provides a method to

6.3.

pay_tables.xlsx

143

seniority_list Documentation, Release 0.68

minimize its effect by allowing users to chose a pay sorting index point. This offers
the best overall solution to construct a consistent job level hierarchy, while controlling
(usually minor) uneven job level compensation rates uniformly for all of the employee
groups.

6.4 settings.xlsx

settings.xlsx provides the following information to the program:
Jobs
* job counts
* job count changes schedule
Compensation
 annual compensation increase or reduction after contract expiration
* contract top of scale longevity (years)
* pay raise option on/off
* pay raise percentage
* pay scale exception year code(s) and duration(s)
* pay scale exception start/end dates
* compute pay measures on/off
* pay table year and longevity for job level hierarchy sort
Furlough
* recall schedule
Descriptions

* employee group number to text descriptions for stats/charting out-
put

* jobs to text descriptions for stats/charting output
* some of the color lists for visualization
* dataset attribute descriptions
Job Assignment Special Conditions
* schedule

* jobs affected

144 Chapter 6. excel input files

seniority_list Documentation, Release 0.68

* other supporting data
Dates
* starting date
* delayed implementation date
Special Conditions
* pre-existing job rights
* ratio job assignment
* ratio count-capped job assignment
* minimum count job assignment
Retirement Age
* retirement age increase on/off
e retirement age increase dates and age increase
Merger-specific Information
* abbreviations, proposal names, job descriptions, chart colors
* label dictionaries
Integration Delay
¢ delayed implementation (on/off)
Jobs

» compute results using job change information vs a static number of
jobs (on/off)

* number of job levels (enhanced/basic)
Furlough
* compute incorporating recall (on/off)
* ignore time furloughed for longevity calculation (on/off)

* include furloughed employees when calculating certain list per-
centages (on/off)

Calculation Type
* no bump-no flush on/off
* actives_only on/off
* Ispcnt calculation on/off

e columns to include in the dataset

6.4. settings.xlIsx 145

seniority_list Documentation, Release 0.68

» compute cat_order (global job category rank) on/off

File Storage

* save_to_pickle on/off

The settings.xlsx workbook contains many worksheets and is the source for the four
dictionaries which seniority_list uses to produce datasets and build chart displays, with
the exception of much of the color dictionary which is generated internally from the
matplotlib colormap collection.

5 directories,

build program files.py
compute_measures.py
converter.py
dill
— case dill.pkl
dict attr.pkl
dict color.pkl
dict job tables.pkl
dict_settings.pkl
ds pl.pkl
ds p2.pkl
ds p3.pkl
last month.pkl
master.pkl
pay table basic.pkl
pay_table_enhanced.pkl
p pl.pkl
p p2.pkl
p p3.pkl
proposal names.pkl
skeleton.pkl
squeeze vals.pkl
standalone.pkl
EDITOR_TOOL.ipynb
excel
L— sample3
master.xlsx
pay tables.xlsx
proposals.xlsx
settings.xlsx
functions.py
join inactives.py
list builder.py
make skeleton.py
matplotlib charting.py
PLOTTING.ipynb
reports
L— sample3
L— pay table data.xlsx
REPORTS. ipynb
reports.py
RUN_ SCRIPTS.ipynb
standalone.py

38 files

Fig. 9: The attribute, color, and settings dictionary files

146

Chapter 6. excel input files

seniority_list Documentation, Release 0.68

6.4.1 settings.xlsx format guide

The settings.xlsx workbook contains multiple worksheets with various formatting re-
quirements. This section describes those requirements and is applicable to any case
study.

The settings.xlsx file is customized by manually updating worksheet cell values and
possibly adding or deleting certain rows/columns as appropriate for each case study.

It is important to not change the structure of the worksheets or the “headers” (first row
column names) in each worksheet except as described below. Many of the Python rou-
tines are looking for a specific layout to be able to gather and process the data correctly.

Except for the “scalars” and “attribute_dict” worksheets (the first two), the definitions
below refer to columns in each sheet.

All dates used in seniority_list to designate a calendar month or starting and ending
dates are end-of-month dates. “2015-12-31” is ok, “2015-01-01"" will fail.

The screenshots below walk through each worksheet of the sample (“sample3”) case-
specific settings.xlsx file. The displayed values in the screenshots are from the sample
case study which must be changed to the appropriate values for each actual case study,
using the guidance below.

The 14 worksheets within the settings.xlsx workbook:

. scalars

. attribute_dict

. ret_incr

. pay_exceptions
. job_counts

. job_changes

. recall

. prex

O 00 3 O Lt &~ W N =

. ratio_cond

10. ratio_count_capped_cond
11. proposal_dictionary

12. eg_colors

13. basic_job_colors

14. enhanced_job_colors

6.4. settings.xlIsx 147

seniority_list Documentation, Release 0.68

scalars

Fig. 10: Program options are set on this sheet along with many other single value variables.

The “scalars” worksheet contains a column of options and a column of corresponding
values. The items in the value column are set by the user as appropriate/desired. The
items in the option column should not be changed - the program looks for these specific

phrases when it operates.

A | B

1 option value
2 enhanced_jobs TRUE
3 job_levels_basic 8
4 job_levels_enhanced 16
5 | enhanced_jobs_full_suffix B
6 | enhanced_jobs_part_suffix R
i compute_with_job_changes TRUE
8 | no_bump TRUE
_9 | recall TRUE
10 | discount_longev_for_fur TRUE
11 | Ispcnt_calc_on_remaining_population. FALSE
12 starting_date 2013-12-31
13 | delayed implementation TRUE
14 | implementation_date 2016-10-31
15 | integrated_counts_preimp FALSE
16 | compute pay measures| TRUE
A7 future_raise FALSE
18 | annual_pcnt_raise 0.02
19 | top_of scale 12
_20 | pay_table year sort 2018
21 pay_table longevity sort 7
22 init_ret_age years 65
_23 | init_ret_age_months 0
24 | ret_age increase FALSE
_25 | dist sg part
_26 | dist_ratio split
27 | dist_count split
28 | compute_job_category order TRUE
29 | add eg col TRUE
30 | add _retdate col TRUE
31 add_doh_col TRUE
32 add_|date col TRUE
33 | add Iname col TRUE
34 | add line col TRUE
35 | add sg col TRUE
36 | add ret mark TRUE
37 | save to_pickle TRUE
38

20

148

Chapter 6. excel input files

seniority_list Documentation, Release 0.68

GENERAL

enhanced_jobs : boolean

True - use enhanced job levels model
False - use basic job levels model

job_levels_basic : integer

The number of job levels in the model without any enhancement for full-
or part-time stratification. Include jobs that are found in any employee
group even if those jobs are not found in all employee groups.

job_levels_enhanced : integer

Total count of part- and full-time job levels. Normally double the num-
ber of basic levels.

enhanced_jobs_full_suffix : string

The suffix to append to full-time job level descriptions, for print-out
within the pay_table_data.xlsx report, stored within the case-specific
folder in the reports folder.

enhanced_jobs_part_suffix : string

The suffix to append to part-time job level descriptions, for print-out
within the pay_table_data.xlsx report, stored within the case-specific
folder in the reports folder.

compute_with_job_changes : boolean

True - use job count changes in model
False - assume static or constant job counts for model

no_bump : boolean

True - compute data model utilizing the no-bump, no-flush system
False - allow full flush and bump for job assignment

recall : boolean

True - include recall of furloughed employees within data model
False - inhibit recall

discount_longev_for_fur : boolean

True - do not apply furlough time towards longevity time
False - allow furlough time to be included as longevity time

Ispent_calc_on_remaining_population : boolean

True - include furloughed employees and employees remaining each
month within denominator for list percentage (Ispcnt) calculations

6.4. settings.xlIsx 149

seniority_list Documentation, Release 0.68

False - include furloughed employees and the greater of employees
remaining or jobs available each month within denominator for list
percentage (Ispcnt) calculations

starting_date : date string

The effective data of the merger. This date is different than the imple-
mentation date. The effective date is the date when participating em-
ployees and the corresponding list data is frozen for modeling purposes.

delayed_implementation : boolean

True - permit independent operation of the employee group seniority
lists until the implementation date to be included within the integrated
dataset

False - calculate dataset with an integrated seniority list commencing
on the starting_date

* implementation_date : date string

The anticipated date when the separate employee seniority lists will be
integrated into one list. seniority_list will model each group separately
until this date.

* integrated_counts_preimp : boolean

True - Assign integrated job counts prior to implementation date when
calculating integrated dataset.

False - Use separate employee group job counts prior to the
implementation date when calculating integrated dataset.

COMPENSATION DATA
* compute_pay_measures : boolean

True - compute and include compensation-related metrics within the
calculated dataset(s). The dataset will include the following columns:

['mlong', 'ylong', 'scale', 'mpay', 'cpay'l]

False - do not compute compensation-related metrics. This will cut
down on dataset computation time when pay-related columns are not
needed.

¢ future_raise : boolean

Set to True if the model will incorporate an assumed raise at the end of
the current contract.

150 Chapter 6. excel input files

seniority_list Documentation, Release 0.68

* annual_pcnt_raise : float

Assumed annual increase (or decrease) in pay rates if the future_raise
input is True. A two percent annual increase would be set as .02

* top_of_scale : integer

The number of longevity pay levels. The model assumes the same pay
rates for all groups, before and after the implementation date.

INDEXED PAY TABLE
* pay_table_year_sort : float

The calendar year within the pay table to use for the model job level
hierarchy sort. The year 2018 would be represented as 2018.0

* pay_table_longevity_sort : integer

The longevity year within the pay table to use for the model job level
hierarchy sort (used in combination with the pay_table_year_sort input).

RETIREMENT
* init_ret_age_years : integer

Initial retirement age in years. This is described as initial, because the
retirement age may be increased in a future year(s) within the data model.

* init_ret_age_months : integer

If the init_ret_age_years input above is not an even year value, use this
input to add the number of months needed to represent the correct retire-
ment age. A retirement age of 65.5 would mean that this input should
be 6, to represent 6 months. Set at zero if the retirement age is an even
year.

* ret_age_increase : boolean

Set to True if the model will incorporate an increase in retirement age.
If False, the ret_incr variable below will be ignored.

BASIC TO ENHANCED CONVERSION
* dist_sg : string

If the enhanced_jobs option value is True, meaning a data model con-
taining enhanced job levels has been selected, this input will determine
how basic job level counts are converted and distributed to enhanced job
levels.

For example, if enhanced job levels 3 and 5 are the full- and part-time
jobs associated with basic level 2, the user may direct that all of the jobs
from level 2 be assigned to job 3 (full-time), to job 5 (part-time), or

6.4. settings.xlIsx 151

seniority_list Documentation, Release 0.68

divided between the two according to the percentages specified within
the job dictionary (jd variable).

The possible value inputs are:

["full', 'part', 'split']

The dist_sg (distribution to special group) input controls the distribution
of job counts from basic job levels affected by pre-existing job rights to
the corresponding enhanced job level counts.

* dist_ratio : string

Same as above, but controlling the ratio_cond enhanced job count con-
version/distribution.

* dist_count : string

Same as above, but controlling the ratio_count_capped_cond enhanced
job count conversion/distribution.

OPTIONAL DATASET COLUMNS (default is True for all, some functions may not
operate without some of these columns existing within the calculated dataset(s))

* compute_job_category_order : boolean

True - generate a “cat_order” job rank metric
False - omit the “cat_order” job rank metric

* add_eg_col : boolean

True - Add an “eg” column to the dataset containing an employee
group code for each employee for every month (integer)

False - Do not include an “eg” column within the calculated dataset.

add_retdate_col : boolean

True - Add a “retdate” column to the dataset containing employee
retirement dates

False - Do not include a “retdate” column within the calculated dataset.
¢ add_doh_col : boolean

True - Add a “doh” column to the dataset containing employee date of
hire
False - Do not include a “‘doh” column within the calculated dataset.

add_ldate _col : boolean

True - Add an “ldate” column to the dataset containing employee
longevity date
False - Do not include an “ldate” column within the calculated dataset.

152 Chapter 6. excel input files

seniority_list Documentation, Release 0.68

¢ add_Iname_col : boolean

True - Add an “Iname” column to the dataset containing employee last
name

False - Do not include an “Iname” column within the calculated
dataset.

¢ add_line_col : boolean

True - Add a “line” column to the dataset indicating employee active
status (1 is active, 0 is inactive)

False - Do not include a “line” column within the calculated dataset.
* add_sg_col : boolean

True - Add a “sg” column to the dataset indicating employees with
special pre-existing job rights (“special group”, marked with a 1 vs 0)

False - Do not include a “sg” column within the calculated dataset.
¢ add_ret_mark : boolean

True - Add a “ret_mark” column to the dataset and mark an employee’s
retirement month with a 1. This was developed to be used when the
retirement age changes within the model, but may be used as a final
month flag as a convenience.

False - Skip the “ret_mark” column
 save_to_pickle : boolean

True - save calculated program datasets to disk
False - calculated datasets will not be written to disk

6.4. settings.xlIsx 153

seniority_list Documentation, Release 0.68

attribute_dict

A

B

col_name

mnum

dx

empkey

mth_pcnt

date

year

pay raise

fur

=g

retdate

doh

|date

Iname

line

50

ret_mark

scale

s Imonths

age

new_order
orig_job

jnum

fhff

SMUMm

SpCnt

Inum
Ispcnt

rank_in_job

job_count

jobp

cat_order
mlong

ylong

mpay

cpay

—
L=

—
—

-
P

-
Lt

-
e

—
Ln

=y
=]}

-
=]

-
o

-
o

Pl
(=]

I |||
o | LB |-t

I
L

Pl [P |Pd [P
\D 0D | = |

Y]
L=

w
urs

w
3%

AL | L | L (L (L
D00~ || [|

col_description
month numiber
index

employee number
month pay percentage
date

contract year

pay rate multiplier
furlough
employee group
retirement date
date of hire
longevity date
last name

active

special group
retirement month

longevity pay scale

starting longevity — months

age

editor order

original job

job level

full bump full flush
seniority number
seniority list percentage
list number (includes fur)
list percent (includes fur)
rank in job level

job level count
percentage within job level
global job ranking
longevity (months)
longevity (years)
monthly pay

cumulative career pay

Fig. 11: The “attribute_dict” sheet is the source for the dict_attr.pkl file, which is a column name
to column description dictionary used for plotting labels.

The values on this worksheet are not normally changed unless the user desires to change
the description associated with an attribute. Changes here will be reflected in certain

chart titles and labels.

154

Chapter 6. excel input files

seniority_list Documentation, Release 0.68

ret_incr

A B
1 |[month_start month_increase
2 2018-01-31 12
3 2020-01-31 12
4
C

Fig. 12: specify retirement age increase(s), by date and increase in months

* month_start: month end date of month to begin retirement age increase (integer)
* month_increase: increase in retirement age in months (integer)

If the user elects to include an increase in the data model retirement age, this worksheet
will provide the program with the necessary inputs. The user simply adds a row for each
planned age increase with the month end date to begin the new retirement age, along
with the number of months to increase the age.

The program transforms the worksheet data into a tuple of tuples for program con-
sumption. The example data above would be stored within the settings dictionary as
follows:

{'ret_incr': (('2018-01-31", 12), ('2020-01-31", 12))}

pay_exceptions

A | B | c |
1 | year_code start date end date
2014.1 2014-12-31 | 2014-12-31

Fig. 13: designate pay_exception periods with separate line entries

Pay rate change periods that do not occur on a calendar year basis are entered on this
worksheet. There is no limit to the number of periods and the duration of any period
may be set to any monthly time span. “year_code” entries in the first column must
correspond to arate schedule in the pay_tables.xlsx “rates” worksheet, under the “year”
header. Additional pay exceptions may be designated simply by adding another row of
information.

If the case study compensation data does not contain any pay exceptions, enter a zero
(0) in column A beneath the “year_code” header (retain the pay_exceptions worksheet
for proper program operation).

6.4. settings.xlIsx 155

seniority_list Documentation, Release 0.68

If the pay exception period is effective for only one month, enter that month in both the
“start_date” and “end_date” columns, as shown in the example above.

The program will convert each row of worksheet information into a Python dictionary,
using the “year_code” column as keys and a list of the “start_date” and “end_date”
date values as values. The worksheet example above would be stored by the program
as such:

{2014.1: [Timestamp('2014-12-31 00:00:00'),
Timestamp('2014-12-31 00:00:00"')]1}

The pay exception information is used by seniority_list during the monthly compensa-
tion index construction process.

job_counts

A | B C D E
1 | job egl eg2 egd
2 | 1 197 80 0
3 | 2 470 85 26
4 | 3 1056 443 319
5 | 4 412 163 0
_6 | 5 628 96 37
7 | 6 1121 464 304
8B | 7 0 M 0
9 | 8 0 66 0
10 |
44

Fig. 14: define the starting number of jobs in each level, by employee group

* job: basic job level number codes (integer)

* eg<n>: job counts in each basic job level category for each employee group (in-
teger)

The “job_counts” worksheet provides an accounting of the number of basic jobs avail-
able within each job level for each employee group at the starting date of the data model.

Basic counts will be converted to enhanced counts automatically if the ‘“en-
hanced_jobs” input (“scalars” worksheet) is set to “True”.

In the example above, three work group counts are indicated. The user should create
one column of job counts for each employee group involved in the integration. Each
column header containing counts must begin with the letters “eg” (employee group)
and be in the order of the employee codes asssigned in master.xlsx, from left to right.
The program looks specifically for job counts in columns which begin with “eg”. If this
employee group does not have any jobs at a certain level, use a zero as a place-holder.

156 Chapter 6. excel input files

seniority_list Documentation, Release 0.68

The job counts are stored in the settings dictionary as a list of lists:

{'eg_counts': [[197, 470, 1056, 412, 628, 1121, O, 0],
[80, 85, 443, 163, 96, 464, 54, 66],
[6, 26, 319, 0, 37, 304, 0, 0]]}

This input is especially important to the central job assignment routine.

job_changes

A B C D E F G H

1 job month_start month_end | total change egl egz eg3

2 1 35 64 43 40 3 0

3 4 35 64 T2 66 6 0

= 2 1 52 -408 -377 -23 -8

5 5 1 52 -510 -474 -26 -10

5] 3 1 61 411 376 26 9

7 6 1 61 411 376 26 9

8

9

Fig. 15: Increase or decrease the number of jobs at any job level, for any time period

* job: job level affected (integer)

 start_month: month in which job change begins (integer, counted from begin-
ning of data model)

* end_month: month in which job change ends (integer, counted from beginning
of data model)

* total_change: total change in job count (positive or negative integer)

* eg<n>: job change counts in each employee group, total for the employee groups
must equal the total change count. Employee count column headers must begin
with “eg”, and be in ascending order from left to right. (integer)

This worksheet provides information to the program if the user elects to model a sce-
nario where the number of jobs available in one or more job levels changes over time.

The job changes always refer to the basic job levels. If an enhanced model is selected,
the job changes will be converted automatically to the proper number of enhanced jobs
in each level.

Each job change event row will be programmatically converted to a list with the fol-
lowing format for use within seniority_list:

[job level affected, [start and end month], total change, [standalone alloca-
tion]]

Example (derived from first job change event row in screenshot):

6.4. settings.xlIsx

157

seniority_list Documentation, Release 0.68

(1, [35, 641, 43, [40, 3, 0]]

The list above has been set to indicate a change in the number of jobs available at job
level 1, starting in month 35 and ending at month 64, increasing 43 jobs, with separate
employee group allocation set as 40 to group 1, 3 to group 2, and none to group 3. The
program will use an algorithm to apply an even, incremental increase in jobs at level
1 over the number of months specified and will use the allocation schedule to apply
the increase to the separate groups until the job changes occur after an implementation
date.

Job changes may be an increase or decrease (positive or negative integer) and different
job changes may occur at the same time.

Each job change list becomes an element within a list of all the job change events when
processed by the program.

The number of “eg” columns, or employee group allocation columns, must match the
actual number of employee groups. For example, if the case study only includes 2
employee groups, there would be no “eg3” column in the worksheet. Each column
header containing job change counts for a specific employee group must begin with the
letters “eg” and be in the order of the employee codes asssigned in master.xlsx, from
left to right. The program looks specifically for employee group job change counts in
columns which begin with “eg”.

recall

A B C D E F G
1 total_monthly egl eg2 eg3 month_start month_end
2 8 6 0 2 50 75
3 10 10 0 o 75 150
4
5

Fig. 16: Recall schedule information for one or more recall periods

* total_monthly: total monthly recall count (integer)

* eg<n>: monthly recall counts for each employee group. The total for the em-
ployee groups must equal the total monthly recall count. Employee count column
headers must begin with “eg”. (integer)

* month_start: month in which recall begins (integer, counted from beginning of
data model)

* month_end: month in which recall ends (integer, counted from beginning of data
model)

158 Chapter 6. excel input files

seniority_list Documentation, Release 0.68

This worksheet provides information to the program if the user elects to model a sce-
nario where furloughed employees are recalled over time.

Each recall event schedule (row) will be programmatically converted to a list with the
following format for use within seniority_list:

[total monthly_recall_count, eg recall allocation, start_month, end_month]

Example (derived from first recall event row in screenshot):

(8, 6, 0, 21, 50, 75]

prex

The list above has been set to indicate a recall of 8 employees per month starting in
month 50 and ending in month 75. The employee group allocation is 6 per month for
employee group 1, and 2 per month for employee group 3. The separate group recall
will apply until an implementation date. After an implementation date, the monthly
recall amount will be applied to all furloughed employees, according to a recall pri-
ority function input. The default is to recall employees by rank within the proposed
integrated seniority list (most senior first), but may be set to another method within the
mark_for_recall function (functions module).

Each recall schedule list becomes an element within a list of all the recall events when
processed by the program.

Recall schedules are ignored once all furloughees have returned to work. There may
be more than one recall schedule and recall schedules may overlap.

The number of “eg” columns, or employee group allocation columns, must match the
actual number of employee groups. For example, if the case study only includes 2 em-
ployee groups, there would be no “eg3” column in the worksheet. Each column header
containing recall counts for a specific employee group must begin with the letters “eg”
and be in the order of the employee codes asssigned in master.xlsx, from left to right.
The program looks specifically for employee group monthly recall counts in columns
which begin with “eg”.

A B C D E F

1 eqg job count month_start month_end

2 1 2 43] 67

3 1 3 130] 67

4 1 5 43] 67

5 1 6 130] 67

6

=

Fig. 17: pre-existing job rights information, by employee group, basic job, allotment, and time

frame

6.4. settings.xlIsx

159

seniority_list Documentation, Release 0.68

* eg: employee group code (integer)
* job: basic job level (integer)
* count: job allocation count (integer)

* month_start: month in which special job right begins (integer, counted from
beginning of data model)

* month_end: month in which special job right ends (integer, counted from begin-
ning of data model)

This worksheet provides information to the program when modeling a scenario which
contains special job guarantees to a subset of employees within one or more of the
merging employee groups. These pre-existing job rights will be incorporated within
both standalone and integrated models. This type of job right would likely be part of a
previous seniority integration award or settlement.

The terms “prex” (pre-existing condition) and “sg” (special group) are used inter-
changeably.

The job rights always refer to the basic job levels. If an enhanced model is selected,
the job rights will be converted automatically to the proper number of enhanced jobs
in each level. See the “sg_dist” definition in the “scalars” worksheet discussion for
guidance on controlling how the job rights are distributed between basic and enhanced
job levels.

Each pre-existing job rights schedule (row) will be programmatically converted to a
list with the following format for use within seniority_list:

[eg, jnum, count, start_month, end_month]

Example:

[1, 5, 43, 0, 67]

The list above has been set to permit employees delineated as having special rights
from employee group 1 to be assigned up to 43 positions in job level 5, starting with
month 0 and continuing to month 67.

Employees with special job rights must be marked with a 1 in the input master.xlsx “sg”
column. This marks employees within an employee group as those employees subject
to special job assignment rights.

160 Chapter 6. excel input files

seniority_list Documentation, Release 0.68

ratio_cond
A B C D E F G H [
1 | basic_job groupl group2 weightl weight2 month_start month_end snapshot
2 1 1 23 2.48 1 34 72 FALSE
3 4 1 23 2.46 1 34 72 FALSE
4
| =

Fig. 18: designate ratio condition employee groups, basic job(s) affected, ratio weightings, effective
months, and snapshot option

* basic_job: (integer) basic job level

* group<n> columns: (integer or comma separated integers) for each “group” col-
umn, designate a ratio group by employee group code(s). If more than one em-
ployee group will make up the ratio group, enter both employee group codes,
separated by a comma, such as “2,3”.

* weight<n> columns: (integer or float) for each “weight” column, designate a
value to be used as a ratio weighting. Any number value is valid. Weights will
correspond to group codes and must be in same order as the group codes column-
wise, from left to right.

* month_start: (integer) model month in which to begin condition (from starting
date, inclusive)

* month_end: (integer) model month in which to begin condition (from starting
date, inclusive)

* snapshot: (boolean [“TRUE”, “FALSE”]) capture the existing job count ratio
which exists at the “month_start” data model month (ignores the weight column
inputs).

This worksheet provides information to the program if the user elects to model a sce-
nario which contains a prospective job assignment condition based maintaining a ratio
of jobs in a specified job level(s) between one employee group and one or more other
employee group(s).

The basic_job column always refers to the basic job levels. If an enhanced model
is selected, the job levels will be converted automatically to include enhanced jobs
associated with the basic job levels or as otherwise directed by the convert function
from the converter module. See the “ratio_dist” definition in the ‘““scalars” worksheet
discussion for guidance on controlling how the job levels are determined when using
an enhanced job level model.

The user may add or delete “group” columns and “weight” columns as required for the
case study, as long as this is done in corresponding pairs. The program will look for
and match ratio groups (“group” columns) with ratio weightings (“weight” columns)

6.4. settings.xlIsx 161

seniority_list Documentation, Release 0.68

by column order. Group and weight columns are identified by the program when col-
umn headers begin with “group” and “weight”. It is acceptable to have entires of zero
(“0”) in a group column if necessary (with mergers involving more than two employee
groups) to ignore that group column within a row entry, as in the following example:

A B C D E F G H I J b
1 basic_job | groupl group2 group3 weightl | weight2 weight3 month_start | month_end | snapshot
2 1 1 2.3 Ii| 2.48 1 i| 34 72 FALSE
= 4 1 2 3 2.1 1 0.8 34 72 FALSE
4
g

Fig. 19: group 3 is not included in the basic job level 1 ratio condition and any weighting in the
“weight3” column is ignored

A zero entry in a weight column corresponding to a valid non-zero group column will
be interpreted by the conditional job assignment routine to mean that no new job open-
ings should be assigned to that group(s). No bump, no flush rules will protect employ-
ees from the affected group from being displaced from current job levels. Positions
available each month will be assigned to the appropriate group(s) so as to get as close
as possible to the desired job ratio(s) over time.

The ratio_cond worksheet data is programmatically combined to form a dictionary for
program operation. The dictionary is used as an argument for the assign_cond_ratio
function. Jobs are assigned to the ratio groups according to the corresponding weight-
ings beginning with the month_start and continuing until the ending date.

The function may be used in conjunction with the set_snapshot_weights function to
capture an existing ratio of jobs between ratio groups as they exist at the “month_start”
month snapshot. The snapshot weightings will be used during the condition period
only (“month_start” to “month_end”). The snapshot option is selected by a “TRUE”
cell input within the “snapshot” column.

The function will adjust the job assignment quota counts if the number of jobs available
within job levels changes from month to month.

The dictionary is formed with the following format:
job level: [(employee groups), (weightings), start_month, end_month}]

Example (from first row of top example above, converted to enhanced job levels):

{1: [CL11, [z, 31D, (2.48, 1.0), 34, 72],
2@ [C[11, [z, 31>, (2.48, 1.0), 34, 72]}

The dictionary input above has been set to distribute job assignments for job levels 1
and 2 between employee group 1 and employee groups 2 and 3 (combined) at a ratio
of 2.48:1, in data model months 34 through 72.

162 Chapter 6. excel input files

seniority_list Documentation, Release 0.68

ratio_count_capped_cond

A B C D E F G H I J K L
1 | basic_job groupl group2 group3 weightl weight2 weight3 cap month_start month_end snapshot
2 1 1 2 0 2.48 1 0 318 34 94 FALSE
£ 4 1 2 0 2.46 1 0 580 34 94 FALSE
4
[

Fig. 20: define count-ratio condition employee groups, basic job level(s), ratio weightings, cap(s),
and effective months

* basic_job: (integer) basic job level

* group<n> columns: (integer or comma separated integers) for each “group” col-
umn, designate a ratio group by employee group code(s). If more than one em-
ployee group will make up the ratio group, enter both employee group codes,
separated by a comma, such as “2,3”.

* weight<n> columns: (integer or float) for each “weight” column, designate a
value to be used as a ratio weighting. Any number value is valid. Weights will
correspond to group codes and must be in same order as the group codes column-
wise, from left to right.

* cap: (integer) the maximum total number of jobs to distribute among the appli-
cable employee groups

* month_start: (integer) model month in which to begin condition (from starting
date, inclusive)

* month_end: (integer) model month in which to begin condition (from starting
date, inclusive)

e snapshot: (boolean [“TRUE”, “FALSE”]) capture the existing job count ratio
which exists at the “month_start” data model month (ignores the weight column
inputs). This ratio will be used for job assignments (up to the applicable job count

cap).

This worksheet provides information to the program if the user elects to model a sce-
nario which contains a prospective job assignment condition based on maintaining a
ratio of jobs in a specified job level(s) count between designated employee groups. The
condition is not applied to job assignments above the job count cap.

The job column always refers to the basic job levels. If an enhanced model is selected,
the job levels will be converted automatically to include enhanced jobs associated with
the basic job levels or as otherwise directed by the convert function from the converter
module. See the “quota_dist” definition in the “scalars” worksheet discussion for guid-
ance on controlling how the job levels are determined when using an enhanced job level
model.

6.4. settings.xlIsx 163

seniority_list Documentation, Release 0.68

This data is used with the assign_cond_ratio_capped function, which assigns a limited
pool of jobs from a selected job level between one group and another group accord-
ing to a set ratio. There must be the same number of “weight” columns as “group”
columns. Entries of “0” in “group” and “weight” columns are acceptable and will be
ignored during calculations. The user may add or delete “group” columns and “weight”
columns as required for the case study, as long as this is done in corresponding pairs.
The program will look for and match ratio groups (“‘group” columns) with ratio weight-
ings (“weight” columns) by column order. Group and weight columns are identified
by the program when column headers begin with “group” and “weight”.

Alternatively, a minimum job count may be assigned to one employee group only, by
listing the employee group in a “group” column, assigning a corresponding positive
weighting (any other weightings should be zero), and assigning a “cap” as the minimum
job allocation for the employee group.

As with the ratio condition above, the function may be used in conjunction with the
set_snapshot_weights function to capture an existing ratio of jobs between ratio groups
as they exist at the “month_start” month snapshot. The snapshot weightings will be
used during the condition period only (“month_start” to “month_end”). The snapshot
option is selected by a “TRUE” cell input within the “snapshot” column.

In the case where there are less jobs than the cap amount, the actual number of jobs
available will be distributed according to the weightings.

The data is programmatically converted to a dictionary with the following format:
job level: [(employee groups), (weightings), cap, start_month, end_month]

Example (from first row of example above, converted to enhanced job levels):

{1: [C[1], [2]), (2.48, 1.0), 191, 34, 94],
2: [C[11, [2D), (2.48, 1.0), 127, 34, 941}

The dictionary input above has been set to distribute job assignments for job levels 1
and 2 between employee group 1 and employee groups 2 and 3 (combined) at a ratio of
2.48:1, in data model months 34 through 72. The conditional assignment will operate
for up to the first 191 jobs in job level 1, and up to the first 127 jobs in job level 2.

164 Chapter 6. excel input files

seniority_list Documentation, Release 0.68

proposal_dictionary

A B c | b | E

1 eg short_descr long_descr

2 0 sa Standalone

3 | 1 1 Group 1

4 2 2 Group 2

3 | 3 3 Group 3

6 |

-

8

Fig. 21: proposal number to description dictionary data

* eg: employee group code, insert a zero to represent standalone data for plotting
(integer)

* short_descr: short descriptive labels for chart labels and titles
* long_descr: longer descriptive labels for chart labels and titles

This worksheet provides information to the program which is used for some charting
labels and titles relating to employee groups. It would be more correct to think of this
worksheet as an employee group dictionary. Future coding work will change the name
of this worksheet.

The data contained on this worksheet is transformed into two dictionaries. The “eg”
column will be the integer keys in both, and the other columns will each make up the
value items in separate dictionaries.

The “eg” column should contain the employee group codes in low to high sequential
order, with the addition of a zero at the beginning to represent standalone data plotting.

The brief descriptions in the “short_descr” column will be the values in the “p_dict”

dictionary:
{0: 'sa',
1: '1'",
2: '2",
3: '3'}

The slightly longer descriptions in the “long_descr” column will be the values in the
“p_dict_verbose” dictionary:

{0: 'Standalone',
1: '"Group 1',

2: 'Group 2',

3: '"Group 3'}

6.4. settings.xlIsx 165

seniority_list Documentation, Release 0.68

Both dictionaries are stored in the settings dictionary.

eg_colors

A B C D E E G

1 | eg eg_colors eg_colors_Igt lin_reg_colors | lin_reg_colors2 | mean_colors
2 | 1 #505050 #BcBele #00b300 grey #4d4d4d
3 | 2 #00811f #3390ff #0086b3 #0086b3 #3390ff
4 3 #ff6600 #8533 #ccH200 #ccH200 #ff8000
.

6

i

Fig. 22: user-defined charting colors corresponding to the employee groups

* eg: employee group codes, one row for each group (integer)

* eg_colors: chart colors to use when plotting values representing the employee
groups (color values)

* eg_colors_lgt: alternate lighter chart colors to use when plotting values repre-
senting the employee groups (color values)

* lin_reg_colors: sample set of colors which may be used with the editor tool when
plotting polynomial regression lines (color values)

* lin_reg_colors2: sample set of colors which may be used with the editor tool
when plotting polynomial regression lines (color values)

* mean_colors: sample set of colors which may be used with the editor tool when
plotting average value lines (color values)

This worksheet provides lists of colors which are used to represent the employee groups
or values associated with the employee groups when creating charts.

The lists are arranged vertically on the worksheet. The rows represent the employee
groups and must be in employee group code sequential order, lowest to highest. The
program will arrange each worksheet column into a dictionary with the color name
(worksheet column header) as the key, and the color values in each column as the value
(as a list).

Example (for the 3 employee group example in the image above, “eg_colors” column):

{'eg_colors': ['#505050', '#0081ff', '#ff6600']}

The rest of the color lists would be treated similarly. The output dictionaries from this
worksheet are added to the color dictionary file, dict_color.pkl.

166 Chapter 6. excel input files

seniority_list Documentation, Release 0.68

basic_job_colors

A | B C D E | F |

1 Jeb red green blue alpha
2 1 0.63 0.8 0.89 1
3 | 2 0.14 0.48 0.7 1
4 | 3 0.66 0.83 0.51 1
_5 | 4 0.28 0.62 0.21 1
6 | 3 0.97 0.93 0.53 1
i 6 0.9 0.21 0.16 1
8 | 7 0.99 0.79 0.49 1
9 | 8 0.94 0.54 0.2 1
10 | 9 0.5 0.5 0.5 1
i

A2

A3

Fig. 23: user-defined job level charting colors

job: basic job level (integer)

red: float value from 0.0 to 1.0

* green: float value from 0.0 to 1.0

blue: float value from 0.0 to 1.0
* alpha: float value from 0.0 to 1.0

This worksheet provides user-defined basic job colors in red, green, blue, alpha float
format.

While the make_color_list plotting function provides many lists of colors for plotting,
the user may wish to define specific color values to represent the various job levels
within the data model.

List of color codes used by various plotting functions to represent job levels. The
example color codes are in [red, green, blue, and alpha] float format, but color hex
codes or color names may be used as well. The rgba color codes may be derived from
the make_color_list plotting function, and then copied into the worksheet cells.

The length of these lists is: job level count + 1. The last color value will be used to
represent furlough. The example below shows a color list for a case study with 8 basic
job levels.

If the “scalars” worksheet “enhanced_jobs” input is False, the program will store the
information on this worksheet in the color dictionary as a list of color lists:

{'job_colors': [[0.65, 0.8, 0.89, 1.0],
[0.14, 0.48, 0.7, 1.0],

(continues on next page)

6.4. settings.xlIsx 167

seniority_list Documentation, Release 0.68

(continued from previous page)

[0.66, 0.85, 0.51, 1.0],

[0.28, 0.62, 0.21, 1.0],

[0.97, 0.53, 0.53, 1.0],

[0.9, 0.21, 0.16, 1.0],

[0.99, 0.79, 0.49, 1.0],

[0.94, 0.54, 0.2, 1.0],

[0.5, 0.5, 0.5, 1.0]]1}

enhanced_job_colors

A | B C D E F
1 jeb red green blue alpha
2 1 0.63 0.81 0.89 1
3 2 0.3 0.59 0.77 1
4 3 0.19 0.39 0.7 1
5 4 0.66 0.85 0.55 1
6 5 0.41 0.73 0.32 1
7 -] 0.22 0.6 0.23 1
8 7 0.93 0.61 0.97 1
9] 0.93 0.32 0.32 1
10 9 0.73 0.1 0.1 1
11 10 0.99 0.79 0.49 1
12 11 0.95 0.65 0.19 1
13 12 0.82 0.42 0.12 1
14 13 0.82 0.67 0.71 1
15 14 0.6 0.47 0.72 1
16 13 0.3 0.35 0.6 1
17 16 0.9 0.87 0.6 1
18 17 0.5 0.5 0.5 1
19
20
21

Fig. 24: user-defined job level charting colors

job: enhanced job level (integer)

red: float value from 0.0 to 1.0

green: float value from 0.0 to 1.0

blue: float value from 0.0 to 1.0

* alpha: float value from 0.0 to 1.0

The description for this worksheet is almost identical to the “basic_job_colors™” guide
above. However, there will normally be twice as many job colors (one for each en-
hanced job level) plus a furlough color value.

If the ““scalars” worksheet “enhanced_jobs” input is True, the program will store the
information on this worksheet in the color dictionary as a list of color lists:

168

Chapter 6. excel input files

seniority_list Documentation, Release 0.68

[0.6,
[0.5
[0.9,
[0.5

{'job_colors': [[0.65,
[0.31,
[0.19,
[0.66,
[0.41,
[0.22,
[0.93,
[0.93,
[0.75,
[0.99,
[0.95,
[0.82,
[0.82,

(== R — I — =

.6, 0.23, 1.0],

.32, 0.32, 1.0],
.1, 0.1, 1.0],
.79, 0.49, 1.0],

@ o

.67, 0.71, 1.0],
.47, 0.72, 1.0],
5, 0.6, 1.0],
.87, 0.6, 1.0],

.89, 1.0],
.77, 1.0],
.7, 1.0],
.55, 1.0],
.32, 1.0],
0.57, 1.0],
0.19, 1.0],
0.12, 1.0],
1.0]11}

6.5 anonymizing input data

seniority_list includes several functions which are able to modify worksheet data within
the excel input files, with focus on the master.xlsx and pay_tables.xlsx files. These oper-
ations are helpful when the user wishes to publicly share data or analysis which could
otherwise be considered confidential. For example, these functions can quickly pro-
duce substitute names and employee numbers for all employees. Subsequent datasets
and chart analysis will reference the modified input data.

Please see the “program demonstration” section within the user guide for more infor-

mation.

6.5. anonymizing input data

169

seniority_list Documentation, Release 0.68

170 Chapter 6. excel input files

CHAPTER
SEVEN

QUICK REPORT

7.1 general

seniority_list is able to rapidly generate statistical summary reports for all integrated
list outcomes. This capability is provided through the functions within the reports
module. Existing datasets are automatically recognized and loaded internally by the
reports module through use of the load_datasets function from the functions module.

This program feature offers insight into significant outcome metrics prior to more de-
tailed analysis using the built-in plotting functions or other techniques. The user may
also find this functionality helpful for testing or validation following list modification
with the editor tool.

Quick reporting trades the extensive customization and analytical resolution offered
with the built-in plotting functions for a fast outline reporting of a limited set of prede-
termined attribute measurements.

Report output is stored within the reports/<case name> folder. The report information
is presented as two excel spreadsheets and numerous chart images. Summary reports
may be shared with others by simply copying and disributing the reports/<case name>
folder.

A more recent addition to the reporting capability of senior_list is time-in-job com-
parisons, discussed in the section below. The file output from the job_diff _to_excel
function is stored within the reports/<case name>/by_employee folder.

171

seniority_list Documentation, Release 0.68

7.1.1 computed statistics
The reports module functions generate a collection of summary data consisting of av-
erage attribute values for each employee group over the life of the data model.
The statistics are computed in two ways:
* values for employees at retirement only
* annual values for all employees
The values are calculated from groupings, or bins, of certain categorical data:
* longevity or date of hire year
* starting job level
* population quantile membership (within each employee group), with two subsets:
— initial list quantile
— monthly running quantile
Within the categorical groupings, the routines measure a default set of attributes:
* seniority list percentage (“spcnt™)
* seniority number (“snum’)
* job value rank (‘“‘cat_order”)
* percentage within job level (“jobp”)

e career earnings (“cpay”)

7.1.2 grouping method definitions

* longevity year or date of hire year

Employees may be grouped and compared by the longevity year or date of hire
year (selectable as a function input). Grouping in this fashion permits future year
comparison of employees from each employee group from the same hire year or
with the equivalent longevity year.

* quantile

The default number of quantiles used for membership grouping is 10, meaning
an employee at 5% on the list would be a member of quantile 1, 25% would be
quantile 3, etc. The number of quantiles may be modified through a function input.

— initial list quantile

172 Chapter 7. quick report

seniority_list Documentation, Release 0.68

Employees are assigned to a quantile group based on separate em-
ployee group seniority list percentage postition at the merger date.
Initial list quantile members are tracked throughout the data model
time period, for each employee group separately. This tracking pro-
vides a comparative attribute value analysis for cohort list percent
employees from each group. Using the initial quantile membership
will allow comparing employees from separate groups in future years
who were initially members of the same relative quantile.

— monthly running quantile

For each month of the data model, employees are assigned to a quan-
tile group based on separate employee group seniority list percentage
postition. Running quantile members are tracked throughout the data
model time period, for each employee group separately. This tracking
provides a comparative attribute value analysis, averaged on an an-
nual basis, for cohort list percent employees within each group. This
style of analysis will show, for example, the average job level held by
the 3rd quantile of employees within each group for the year 2022.

* starting job level

Employees are assigned to a initial job level group based on separate employee
group job level postitions at the merger date. Initial list job level members are
tracked throughout the data model time period, for each employee group sepa-
rately. This tracking provides a comparative attribute value analysis for cohort
initial job level employees from each group. Using the initial job level member-
ship will allow comparing employees from separate groups in future years who
were initially members of the same relative job group.

7.1.3 excel files

The stats_to_excel function stores the statistical data in two excel workbooks:
o ret_stats.xlsx
o annual_stats.xlsx

Each workbook contains many worksheets. Each worksheet contains results for a spe-
cific calculated dataset with a certain type of grouping applied.

7.1. general 173

seniority_list Documentation, Release 0.68

A B C D E F | G | H 1| J] K L| M| N o P Q
1 spent snum cat_order jobp cpay
= eg 1) 3 1 [2] 3 T 12 3 T[2]3 1) 3
3 Idate retdate
92 | 2027 | o0.0% 5.5% 2 335 2 335 1.01 | 3.16 2399 | 2070
93 2028 | o.0% 1 1 1.01 2556
94 | 1986 | 2014 | 128% 39.9% 7.9% 495 578 | 55 | 667 | 2532 829 403 686 419 66 61 74
95 | 2015 | 14.0% 38.2% 534 | 553 757 | 2421 416 | 6.67 178 | 131
96 | 2016 | 12.5% 42.8% 6.4% 485 1644 44 | 698 | 2081 700 | 4.16 | 596 4.14 355 | 301 | 268
97 | 2017 | 7.9% 56.0% 20.4% 465 | 3284 1195 548 2162 1203 4.08 6.13 456 519 | 430 | 558
98 | 2018 | 4.9% 52.0% 20.5% 410 | 3087 1220 @485 2199 @ 715 | 4.04 604 3.59 652 | 580 | 455
99 | 2019 5.9% 47.5% 17.7% 357 | 2871 1069 | 440 | 2275 @ 237 | 3.83 | 6.12 2.36 806 @ 731 | 840
100 | 2020 | 48% 43.6% 15.1% 289 | 2631 911 346 2388 211 3.23 6.43 216 987 855 1052
101 | 2021 | 3.6% 39.3% 14.0% 220 | 2372 847 | 244 2217 188 2.44 610 1.98 1145 994 | 1148
102 | 2022 | 2.7% 35.4% 162 | 2136 169 | 2136 1.91 | 6.08 1324 | 1131
103 | 2023 1.9% 29.0% 8.3% 116 1749 504 | 116 1749 228 | 1.61 5.04 229 1510 1307 @ 1539
104 | 2024 1.1% 24.3% 4.9% 66 | 1470 | 297 66 | 1470 190 | 1.34 472 1.99 1714 1442 1782
105 | 2025 | 7% 19.4% 2.9% 44 | 1169 | 173 44 | 1169 | 173 | 1.23 | 451 190 1883 1616 2065
106 | 2026 | o0.3% 15.2% 21 | 921 21 | 921 111 | 434 2106 | 1754
107 | 2027 | o0.2% 11.2% 10 | 678 10 | 678 1.05 | 4.17 2294 | 1917
108 | 2028 | o0.0% B8.7% 2 527 2 527 1.01 | 4.07 2498 | 2052
109 | 2029 | o0.0% 1 1 1.01 2697
110 2030 3.7% 224 224 2.25 2379
11| 1987 | 2014 | 19.1% 49.9% 735 | 723 1075 | 3072 4.39 | 8.30 74 | 63
112 | 2015 | 19.4% 45.6% 10.0% 738 661 69 | 1101 2839 880 | 4.44 | 7.58 426 217 | 170 | 181
113 | 2016 | 17.0% 44.6% 9.7% 752 645 66 | 998 | 2772 823 | 4.39 | 7.40 | 4.25 361 | 257 | 330
114 | 2017 | 12.2% 73.4% 29.9% 717 | 4309 1758 778 | 2745 1383 4.25 7.36 4.69 508 | 405 | 467
115 | 2018 | 10.8% 70.7% 24.5% 639 | 4196 1450 97 @ 2789 1422 420 7.37 471 638 | 533 | 627
116 | 2019 | 97% 63.8% 21.9% 588 3852 1322 658 2782 303 416 7.23 2.86 796 | 672 841
17 | 2020 7.8% 61.8% 19.2% 472 | 3730 1159 535 | 2872 @ 302 | 4.07 | 7.43 2.86 961 @ 800 | 1018
118 | 2021 6.2% 56.9% 16.9% 375 3440 1021 419 | 2882 307 | 3.81 | 7.45 2.90 1129 933 | 1176
119 | 2022 | 47% 50.1% 14.5% 285 | 3024 873 309 2789 312 294 7.25 293 1283 1095 @ 1320
120 | 2023 | 3.3% 46.6% 10.6% 199 | 2813 641 | 207 2758 @ 315 | 2.15 7.24 2.96 1464 1223 | 1507
121 | 2024 | 22% 40.4% 6.9% 136 | 2439 416 | 136 2439 314 | 171 656 2.95 1637 | 1355 | 1632
122 | 2025 | 15% 34.9% 6.1% 90 | 2108 369 90 | 2108 320 147 596 3.00 1844 1486 1829
123 | 2026 | 0.8% 25.9% 2.4% 47 | 1562 144 | 47 | 1562 144 | 125 4.96 175 2065 1666 2067
124 | 2027 | o0.4% 207% 1.3% 21 | 1252 81 21 | 1252 81 | 1.11 457 142 2248 1815 2281
125 2028 | 0.1% 21.3% 1.2% 8 1287 72 8 1287 72 | 1.04 459 138 2435 1946 2320
126 | 1988 | 2014 | 236% 59.1% 13.7% 906 | 857 | 94 | 1368 3777 1052 4.64 10.09 4.38 111 | 60 | 107
127 | 2015 | 23.8% 53.8% 13.9% 906 | 780 95 | 1379 3306 | 1029 4.66 9.18 4.39 216 = 141 | 217
128 | 2016 | 24.8% 51.7% 934 | 749 1435 | 3138 472 | 865 314 | 224
129 2017 | 15.0% 32.3% 880 1896 928 1429 | 4.36 472 476 554
130 2018 a4 a0/l 04 AOs ocn AL onan AnTL Ann | 0 a0 £an AL

Fig. 1: example worksheet from ret_stats workbook?2ee 174,48

ret_stats.xlsx workbook

The image below is the same worksheet as the example above, with the addi-
tion of some formatting for descriptive clarity. The yellow header row con-
tains the measured attributes, and the blue row just below contains employee
group codes. The peach-colored column contains longevity year informa-
tion, while the green column holds retirement year data.

This worksheet reveals average retirement attribute values for equivalent
longevity year employees from each employee group. The red-boxed area
shows average attribute values for employees with a 1986 longevity year re-
tiring in year 2021. In this example, using the columns under the “spcnt”
header, employees from group 2 with a longevity year of 1986 retiring in

8 http://rubydatasystems.com/reports.html#reports.stats_to_excel

174 Chapter 7. quick report

http://rubydatasystems.com/reports.html#reports.stats_to_excel

seniority_list Documentation, Release 0.68

2021 will finish at an average of 39.3% on the integrated list. This com-
pares to 3.6% and 14% for groups 1 and 3 respectively.

A B c | b | E F G H 1 J K L M N o | P Q R

1 spent snum cat_order jobp
2 | eg 1] 271 3 1 [23| 1273 1 2 3 1 [2713

3 Idate | retdate
93 | 2027 0.0% 5.5% 2 335 2 335 1.01 3.16 2399 2070

94 2028 | 0.0% 1 1 1.01 2556
95 | 1986 2014 | 12.8% 39.9% 7.9% | 495 578 55 | 667 2532 829 | 4.03 6.86 4.19 | 66 61 74
96 | 2015 |14.0% 38.2% 534 553 757 | 2421 4.16 6.67 178 | 131
97 | 2016 | 12.5% 42.8% 6.4% | 485 1644 44 | 698 2081 700 | 4.16 596 4.14 | 355 301 268
98 | 2017 7.9% 56.0% 20.4%| 465 3284 1195| 548 2162 1203| 4.08 6.13 4.56 | 519 430 558
|99 | 2018 6.9% 52.0% 20.5%| 410 3087 1220| 485 2199 715 | 404 6.04 3.59 | 652 580 655
100 | 2019 5.9% 47.5% 17.7% | 357 2871 1069| 440 2275 237 | 3.83 6.12 236 | 806 731 840
101 | 2020 | 4.8% 43.6% 15.1% | 289 2631 911 | 346 2388 211 | 3.23 6.43 2.16 | 987 855 1052
102 | 2021 3.6% 39.3% 14.0% | 220 2372 847 | 244 2217 188 | 2.44 6.10 1.98 | 1145 994 1148
103 | 2022 2.7% 35.4% 162 2136 169 2136 1.91 6.08 1324 1131
104 | 2023 1.9% 29.0% 8.3% | 116 1749 504 | 116 1749 228 | 1.61 5.04 229 |1510 1307 1539
105 | 2024 1.1% 24.3% 4.9% 66 1470 297 | 66 1470 190 | 1.34 4.72 | 1.99 | 1714 1442 1782
106 | 2025 0.7% 19.4% 2.9% | 44 1169 173 | 44 1169 173 | 1.23 4.51 1.90 | 1883 1616 2065
107 | 2026 0.3% 15.2% 21 921 21 921 1.11 4.34 2106 | 1754
108 | 2027 0.2% 11.2% 10 678 10 @ 678 1.05 4.17 2294 | 1917
109 | 2028 0.0% 8.7% 2 527 2 527 1.01 4.07 2498 | 2052
110 | 2029 | 0.0% 1 1 1.01 2697

111 2030 3.7% 224 224 2.25 2379
112 | 1987 2014 119.1% 49.9% 735 723 1075 3072 4.39 8.30 74 63
113 2015]19.4% 45.6% 10.0% | 738 661 69 | 1101 2839 880 | 444 7.58 426 | 217 170 181
114 | 2016 | 17.0% 44.6% 9.7% | 752 645 66 | 998 2772 823|439 7.40 425|361 257 330
115 | 2017 | 12.2% 73.4% 29.9%| 717 4309 1758 | 778 2745 1383| 4.25 7.36 | 4.69 | 508 @405 467
116 | 2018 | 108% 70.7% 24.5% | 639 4196 1450| 697 2789 1422| 420 7.37 471 | 638 533 627
7 | 2019 9.7% 63.8% 21.9%] 588 3852 1322 658 2782 303 | 4.16 7.23 286 | 796 672 841
118 | 2020 7.8% 61.8% 19.2%| 472 3730 1159| 535 2872 302 | 407 7.43 286 | 961 800 1018
119 | 2021 6.2% 56.9% 16.9% | 375 3440 1021| 419 2882 307 | 3.81 7.45 2.90 | 1129 933 1176
120 | 2022 4.7% 50.1% 14.5%] 285 3024 873 | 309 2789 312]| 294 7.25 293 |1283 1095 1320
121 | 2023 3.3% 46.6% 10.6% | 199 2813 641 | 207 2758 315 | 2.15 7.24 | 2.96 | 1464 1223 1507
122 | 2024 2.2% 40.4% 6.9% | 136 2439 416 | 136 2439 314 | 1.71 6.56 2.95 | 1637 1355 1632
123 | 2025 1.5% 34.9% 6.1% 90 2108 369 | 90 | 2108 320 | 1.47 5.96 3.00 | 1844 1486 1829
124 | 2026 | 0.8% 25.9% 2.4% | 47 1562 144 | 47 1562 144 | 1.25 4.96 | 1.75 | 2065 1666 2067
125 | 2027 0.4% 20.7% 1.3% 21 1252 81 21 1252 81 1.11 4.57 | 1.42 | 2248 1815 2281
126 2028 0.1% 21.3% 1.2% 8 1287 72 8 1287 72 1.04 459 | 1.38 | 2435 1946 2320
127 | 1988 2014 | 23.6% 59.1% 13.7% | 906 857 94 | 1368 3777 1052| 4.64 10.09 4.38 | 111 60 107
128 | 2015 | 23.8% 53.8% 13.9%| 906 780 95 |1379 3306 1029| 4.66 9.18 4.39 | 216 141 217
129 | 2016 |24.8% 51.7% 934 749 1435 | 3138 4.72 8.65 314 | 224

130 2017 | 15.0% 32.3% | 880 1896 | 928 1429 4.36 4.72 | 476 554
121 201R 1A 20 Q1 9% A2 | ATOA ag7 | WnTA A7 a1a AN | ATA

stats at retirement for each employee group tracked by longevity year mem-
bership

annual_stats.xIsx workbook

The example below has also been formatted as described above.

This worksheet reveals average annual attribute values for employees with

the same intial job level at the start of the data model.

In other words, a snapshot of jobs held by all employees is taken at the very
beginning of the data model. Employees within each beginning snapshot
job level are then tracked throughout the entire data model time period, with
average attribute measurements sampled on an annual basis. The measure-

ments are taken for each employee group separately.

7.1. general

175

seniority_list Documentation, Release 0.68

In the image below, the red-boxed area contains average attribute values for
employees with an initial job level of 6, as measured in year 2022 of the data
model. The boxed data under the “spcnt” header indicated that employees
from group 2 will be positioned at an average of 56% on the integrated list.
This compares to 26.1% and 33% for groups 1 and 3 respectively.

A B c | b | E F | G | H | O I ¢ L | M | N o | P | Q R | s | T u
1 spent snum cat_order jobp ylong
T2 | eg 1 [2] 3 1 [273 1 [2] 3 1 [2] 3 1 [2 [3 |10]20] 30
3 | eg_initQ| date

103 2035 | 0.0% 0.3% 1 15 1 15 1.01 1.08 | 3537 3402 | 43.7 37.9
04| 6 2013 |60.3% 54.9% 56.9%| 2341 797 390 | 3519 3470 3844 | 9.46 9.37 10.06 [6 6 16.6 265 153
105 | 2014 | 60.2% 53.2% 55.8%| 2322 772 383 | 3506 3321 3728 | 9.49 | 9.04 9.93 51 52 49 17.2 | 27.0 15.8
106 | 2015 |60.0% 49.4% 53.7%| 2285 715 368 | 3480 3039 3427 | 955 822 935 | 146 152 142 | 182 280 168
107 | 2016 |57.3% 51.1% 52.0% | 2316 1310 837 | 3439 2824 3060 | 9.59 7.56 | 8.49 | 250 269 251 | 19.2 29.0 17.8
108 | 2017 | 44.4% 77.9% 54.3% | 2604 4575 3187 | 3262 2836 2886 | 9.23 7.57 8.02 | 357 396 369 | 20.2 30.0 188
109 | 2018 |41.5% 74.2% 50.9% | 2462 4403 3018 | 3035 2880 2748 | 8.24 758 | 7.48 | 471 526 495 | 21.2 31.0 19.8
110 | 2019 |37.7% 69.6% 46.4% | 2279 4203 2804 | 2674 2942 2730 | 7.05 7.59 7.22 | 599 660 628 | 22.2 320 20.8
11| 2020 |34.0% 65.6% 42.2%| 2054 3965 2546 | 2223 2958 2612 | 6.32 7.63 @ 6.93 | 736 796 766 | 23.2 33.0 218
12| 2021 |30.2% 61.1% 37.7%| 1821 3692 2276 | 1873 2965 2283 | 554 7.65 6.44 | 877 932 905 | 242 340 22.8
113 | 2022 |26.1% 56.0% 33.0%| 1578 3385 1991 | 1580 2978 1994 | 4.85 7.68 5.87 | 1030 1068 1044 | 25.2 349 238
14 2023 |21.9% 50.5% 28.1%| 1322 3053 1695 | 1322 2899 1695 | 4.62 | 7.53 | 4.89 | 1187 1201 1195] 26.2 359 248
15| 2024 |17.4% 44.3% 22.9%| 1054 2674 1386 | 1054 2668 1386 | 443 7.09 4.66 | 1343 1338 1354 | 271 369 258
116 | 2025 |13.3% 38.2% 18.1%| 803 2307 1093 | 803 2307 1093 | 426 | 6.30 | 4.46 | 1499 1475 1515] 28.1 37.8 26.8
n7 | 2026 | 9.4% 32.4% 13.5%| 569 1955 818 | 569 1955 818 | 4.04 | 572 4.27 | 1655 1618 1671 | 29.0 38.8 278
118 | 2027 | 6.2% 28.7% | 9.6% | 374 1735 577 374 1735 577 | 335 520 | 4.10 | 1813 1744 1829 | 29.8 39.6 28.8
19| 2028 | 4.0% 23.7% 6.7% | 239 1429 406 239 1429 406 | 2.41 | 4.69 3.71 | 1983 1899 1988 | 30.6 40.6 29.8
120 | 2029 | 2.6% 4.9% | 157 295 157 295 | 1.85 2.82 | 2166 2155 | 315 30.8
21| 2030 | 1.7% 3.4% | 103 208 103 208 | 153 2.14 | 2354 2323 | 324 31.7
122 | 2031 | 1.1% 2.3% 63 138 63 138 | 1.33 1.72 | 2547 2514 | 33.3 32.7
123 | 2032 | 0.6% 1.5% 39 91 39 91 1.20 1.47 | 2747 2708 | 34.2 33.7
124 | 2033 | 0.4% 0.9% 24 57 24 57 1.13 1.30 | 2942 2903 | 35.1 34.7
125 | 2034 | 0.3% 0.6% 16 37 16 37 1.08 1.19 | 3136 3081 | 36.0 35.6
126 | 2035 | 0.1% 0.4% 9 22 9 22 1.05 1.11 | 3335 3245 | 37.0 36.4
127 | 2036] 0.1% 0.1% 4 8 4 8 1.02 1.04 | 3526 3464 | 37.9 37.5
128 | 2037 | 0.0% 0.1% 3 5 3 5 1.01 1.02 | 3698 3662 | 38.8 38.5
129 | 2038] 0.0% 0.0% 2 3 2 3 1.01 1.02 | 3928 3802 | 39.9 39.2
130 | 2039 | 0.0% 1 1 1.01 4120 40.9

131 2040 | 0.0% 1 1 1.01 4206 41.3
132 | 7 2013 |71.2% 64.9% 67.2%| 2767 942 461 | 4050 4178 4303 | 10.02 10.37 | 10.47 6 6 6 14.6 225 143
133 | 2014 |71.2% 63.2% 66.2%| 2747 916 454 | 4042 4038 4224 | 10.04 10.29 | 10.44 | 49 48 48 152 23.0 14.8
134 2015 |71.1% 59.0% 64.0% | 2709 855 439 | 4023 3702 4065 | 10.07 9.99 | 10.36| 141 138 137 | 16.2 23.9 158

135 2016]69.1% 60.2% 61.3% | 2808 1504 942 | 3958 3366 3896 | 10.06 9.38 | 10.29 | 243 240 236 | 17.2 249 168

EETS mn17 £0 £0/ | Ok £0/ | £EO 00/ DAAA EN40 AAED ALoL 2970 20E9 0 00 094 4M A0 247 240 297 10 2 aAE 0 170

Fig. 2: annual stats tracked by separate employee group initial quantile membership (the red-boxed
area shows average attribute values in 2022 for employees who initially belonged to quantile 6)

7.1.4 chart images

The retirement_charts and annual_charts functions within the reports module create
many simple statistical charts which are stored as image files within auto-generated
folders located within the reports/<case name> folder. The chart images are visual
representations of the computed statistical data.

With the default function inputs, several directories will be created within the case-
specific reports folder:

176 Chapter 7. quick report

seniority_list Documentation, Release 0.68

L— sample3
annual charts
— ann_charts _init job
— ann_charts _init gntl
— ann_charts longevity date
— ann_charts_run_gntl
ret charts
— ret _charts init job
— ret charts init gntl
— ret charts longevity date
— ret _charts_run_gntl

Fig. 3: folders created with the chart creation functions

The total number of chart images stored within the annual_charts and ret_charts
folders may be relatively large. With the “sample3” example case study, a total of over
2,000 chart images are produced!

spcnt_ig6_p3.png

initial gntl 6
p3 actives
m\h -
1096
& 20% |
iz}
= 4
o 30%% -
48]
o 4
DA%
= .
2 50% A
=
% —
6006 | — &gl
i — g2
700946 —— 203
T T T T T T T T
2015 2020 2025 2030 2035 2040 2045 2050
vear

Fig. 4: the reports module functions produce numerous charts similar to the chart above

Despite the large quantity, it is does not take long to review the charts using a standard
image viewer and left and right arrow keyboard buttons. The routines that produce the
charts use the same chart background, scales, and labels for all charts within a category

7.1. general 177

seniority_list Documentation, Release 0.68

- only the data lines and the titles change from chart to chart. This setup makes is very
easy to see how measurements change between charts.

7.1.5 time-in-job and career pay differential report

The job_diff _to_excel report function will generate spreadsheet reports indicating dif-
ferences in the number of months employees will spend working within the various job
levels, and the corresponding difference in career compensation. The user may select
any two outcome datasets for comparison.

By default, the generated spreadsheets will be formatted to display employee group
color-coded rows and color-coded font to indicate gains or losses in the various job
level categories. This formatting is very useful for visual interpretation, but does add
time to the process (for reference, the “sample3” example case requires approximately
40 seconds with an i7 linux desktop computer). The formatting may be turned off to
create the files more quickly.

A B [c | D] E [FIGJH[I1[J[K][L][M][N][o[PJ]Q[R[S[T[U][V]W] x]
1 empkey |order| Imame | Idate | retdate |eg| 1 |2 [3| 4 |56 |7 |8[9 [10[11[12[13][14]15/16]17] cpay_diff
3547 | 10011018 | 3546 xuxay 1998-12-18 2022-01-08 1 17| -1 -2| -3 -11 36,069
3548 110014704 | 3547 lasejob 1998-12-18 2023-08-17 1 11 2 7] -4 -2 -2/ -12 56,989
3549 | 20011200| 3548 kubie 1986-03-22 2019-02-14 2 o
3550 | 30010422 | 3549 fooosaa 1998-07-28 2029-02-23 3 2 10 -20 -2 10 4,876
3551 | 10012320 3550 cigaluo 1998-12-17 2027-11-28 1 17 1 2| -4/ -2/ -3 -11 66,809
3552 | 20011070 3551 negapee 1986-03-22 2022-10-08 2 -10, 10 7,609
3553 110011868 | 3552 naiozil 1998-12-17 2032-06-12 1 1 3 120 1 2 -4 -2/ -3 -11 73,695
3554 | 20010998 | 3553 juvulab 1986-03-19 2023-11-16 2 1 -11] -11 -48 71 -93,270
3555 | 10012713 | 3554 vasejun 1998-12-19 2024-02-22 1 17 1 2 -3 -4 -2 -11 67,828
3556 | 30010008 | 23555 golueuc 1998-07-31 2029-11-26 3 11 10, -29 -1 9 6,141
3557 | 10014438 | 3556 nufof 1998-12-15 2025-03-15 1 17 1 2 3 4 -2 -11 68,069
3558 | 30010335 3557 penetux 1998-08-28 2026-10-27 3 -7 7 12,022
3559 | 20010491 | 23558 vanonol 1986-03-18 2026-04-16 2 30 -10 -12| -20 72 189,104
3560 | 10014781 3559 tenan 1998-12-18 2025-04-10 1 16 2 3 -4 -4 -2 -11 67,285
3567 | 10012705 3560 cauou 1998-12-19 2027-11-09 1 16/ 2 3 -4 -4 -2 -11 67,285
3562 | 20010026 | 3561 rexuociw 1986-04-11 2017-06-27 2 -8 8 -7,415
3563 | 30010791 | 3562 uuuepeb 1998-08-27 2027-04-11 3 -7 7 12,022
3564 | 10014683 | 3563 janai 1998-12-18 2025-08-01 1 16 2 3 -4 -4 -2 -11 67,285
3565 | 20011012 | 3564 tapigov 1986-04-12 2018-06-06 2 20 20 -18,246
3566 | 10010578 | 23565 vakoted 1998-12-19 2026-05-28 1 16 2 3 -4 -4 -2 -11 67,285
3567 | 20010550 | 3566 ceeixen 1986-04-09 2019-09-08 2 34| 34 -32,230
3568 | 10012290 | 3567 redin 1998-12-16 2029-02-21 1 2 3 11 2 3 -4 4 -1-12 72,509
3569 | 30010386 | 3568 xakik 1998-08-26 2029-12-23 3 12| 10, -29 7 9,571
3570 | 10013840 | 3569 calov 1998-12-18 2029-10-05 1 2 3 11 2 3 -5 -3 -1-12 71,122
3571 (20010974 3570 kikok 1986-04-11 2020-07-18 2 44 44 -42,564
3572 10014769 | 3571 giridiu 1998-12-18 2017-07-09 1 0
3573 20011274 | 3572 bahovea 1986-04-08 2021-02-12 2 51 51 -49,424
3574 | 20010968 | 3573 kakixee 1986-04-09 2021-07-20 2 56/ 56 -54,650
3575 10014071 | 3574 mufoe 1998-12-17 2018-04-19 1 o]
3576 | 30010763 | 3575 zoreooj 1998-08-26 2033-05-20 3 35 18 10 -69 -1 7 131,371
3577 | 10013338 | 3576 xuzaiow 1998-12-18 2025-07-05 1 16 2 3 -5 -2 -2 -12 66,591
3578 | 10012548 | 3577 geuas 1998-12-17 2028-03-15 1 1 15 2 3 -5 -2 -2 -12 66,989
3579 | 30010524 | 3578 eetiq 1998-09-23 2019-02-18 3 o
3580 | 20011685 | 3579 duuam 1986-04-08 2023-03-13 2 3 -11 57 71 -81,831
3581 | 10012503 | 3580 suoom 1998-12-15 2029-12-18 1 1 11| 1 4/ 5 -2 -2 -12 70,302
3582 | 10011834 | 3581 tujib 1998-12-18 2033-04-06 1 1 4 12 4 -5 -2 -2 -12 71,304
3583 | 20010275 3582 giguxun 1986-04-11 2023-07-07 2 6 -12| -53 71 -85,84%
3584 | 30010475| 3583 veaup 1998-09-22 2021-08-03 3 0
3585 | 10010611 | 3584 yaaie 1998-12-19 2023-02-12 1 4 2 15 -5 -2/ -2 -12 45,001
3586 | 20011469 | 3585 dauakah 1986-04-09 2024-01-26 2 -3 -9 -12 -46/ 70 -98,543
3587 | 10013327 | 3586 jokaxin 1998-12-16 2026-06-08 1 17 4 -5 -2/ -2 -12 66,877
3588 | 10010336 | 23587 jayiruu 1998-12-18 2031-07-04 1 2 2 13 4 -4 -3 -2 -12 72,266
3589 | 20010616 | 3588 davuv 1986-04-10 2025-10-27 2 -23 -10 -11 -26 70 -164,586
Icon lnninTR1l 2A5R9 inmunle 199R8-N9-22 2N24-N5-79 a _E -7] =10 7727

Fig. 5: example job_diff to_excel module function output - column width formatting must be done
manually following the creation of the spreadsheet

178 Chapter 7. quick report

seniority_list Documentation, Release 0.68

REPORTS notebook

seniority_list includes an example notebook demonstrating the usage of the reports
module functions. The datasets must be created first before attempting to generate
reports.

7.1. general 179

seniority_list Documentation, Release 0.68

180 Chapter 7. quick report

CHAPTER
EIGHT

EXAMPLE GALLERY

The examples on this page are a subset of what is possible with seniority_list. The
charts below were created using the built-in plotting functions included with the pro-
gram. The plotting functions generally accept many different inputs and optional pa-
rameters, offering analysis over a range of attributes for single or mutliple employee
groups. Again, much more is possible than what is seen in the samples below.

The datasets generated by the main program serve as the data source for the charts.
Program inputs may be altered and new datasets quickly recalculated to reflect a dif-
ferent scenario, such as a change in job counts or a different recall schedule. All of the
charts charts below could be redrawn to reflect those changes in a matter of minutes.

The visualization of the data is not limited to the built-in functions. Users with some
coding experience may write customized functions to explore the data in other ways.

These charts are representative of a three-party integration. The program is able to
handle an integration of any number of workgroups.

Note: Chart titles and other references in this gallery are generic. Actual charts include
text linked to inputs. Job category descriptions in this gallery reflect airline pilot po-
sitions. The descriptions are easily customizable to match job descriptions for other
industry case studies.

screenshots and notes

Most of the following plots have multiple inputs. These inputs allow various groupings
to be studied. The more common groupings include values in a particular month or
months, age or date ranges, employee group (eg) selection(s), quantiles, and job levels.

181

seniority_list Documentation, Release 0.68

Proposal 3 - AGE Distribution - Month 0

3

25

3

g

age

8

1 2 3
€g

Fig. 1: age distribution by group - violin plotPaee 182.49

Proposal 3 - SPCNT Distribution - Month 0

1

eg

spent
g
=

100%

Fig. 2: percentage distribution by group™

49 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.violinplot_by_eg
30 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.violinplot_by_eg

182 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.violinplot_by_eg
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.violinplot_by_eg

seniority_list Documentation, Release 0.68

Age Distribution Comparison - Month 0
0.08

— Group 1
— Group 2
— Group 3

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Fig. 3: kde distribution™ee 183.51

How are jobs distributed throughout the separate lists? This chart compares native
job distribution to native list percentage. The shaded areas indicate that the job level
distribution within one group is not monotonic (uniformly decreasing) due to a pre-
existing special premium job assignment condition for certain members of one group
and also furloughed employees mixed in with active employees.

3! http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.age_kde_dist

8.1. screenshots and notes 183

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.age_kde_dist

seniority_list Documentation, Release 0.68

standalone list percent (includes fur) vs. job level, groups [1, 2, 3]
CaptG4 B
Capt G4 R
CaptG3 B l

CaptG2B
Capt G3 R
Capt G2 R
FIOG4B
FIOG4R
FIOG3B

job level

FIOG2B
CaptG1B
FIOG3R
FIOG2R

CaptG1 R
FIOG1B
FIOG1R

FUR

P N -

£ 2
2 8 8 8 &£ 8 » 2 °
list percent (includes fur)

1003,
95
%0
85
80
75%
70
65%
60
55
50

Fig. 4: standalone jobs by group and list percentage’?ee 18452

An age-percent chart presents a visualization of the distribution of employees by age
and percentage within a proposed integrated list or standalone list(s). Users may plot
data from a particular month, employee group(s), job level, age range, longevity range,
etc.

32 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.eg_attributes

184 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.68

p2 age vs. seniority list percentage, groups [1, 2, 3]

S

388488
EE

seniority list percentage
®

Fig. 5: age vs. list percentage by groupaee 18553

Example view of a data for a selected single group displayed for a future month:

33 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.eg_attributes

8.1. screenshots and notes 185

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.68

p2 age vs. seniority list percentage, groups [3] ,month 40

L 3%
o
£ 40%
8
g g
o 50%
7] 3
= 5%
S 60%
c
L 85%

70%

75%

80%

85%

90%

95%

100%

&2 2 ? g 8 = 8
age

Fig. 6: age vs. list percentage, single group, future month?2ee 186.54

Due to jobs held at implementation combined with the no bump, no flush provision,
employees actually holding a job within a job level may be dispersed over a wide range
of an integrated list rather than falling within a concise percentile range. Other special
conditions may have a similar effect. An example of this distorted disbursement is
illustrated below. The three groups are holding the same job within the integrated list
yet are located on the list at different levels. After implementation and as the separate
groups mesh, this stratification would lead to different job opportunities within the
same bid category.

>* http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.eg_attributes

186 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.68

p1 age vs. seniority list percentage, groups [1, 2, 3] ,month 42

jnum ==
0%
5%
10%
15%
..
20% e e,
25%
. ." \ . .
30% - B
: LR]
.
S B% = 20 B O5| 6
Il %" ee e
R . " o
T 40% PO I AN, HE AT S 1 A
8 "o #* 1V 2w e 2 e X ’,"‘l v tets® "o eg
5 5% - = LI S SRS TR X T hE
- 4 el - e
o 50% a2 ol © .f3‘;:?’,,‘ ’.V:’.:‘ o 1
- o . 3 e vt "':} ot Taoy .t e 2
2 " . "y W @t N s .
%
> %% 3
=
o 60%
c
D 65%
w

70%
75%
80%
85%
90%
9B%
100%

Fig. 7: age vs. list percentage, all groups, same job, future monthfaee 187.53

Here is an example of an aggregate group measure in the form of average longevity
vs. list percentage for three groups. YLONG stands for the decimal year longevity
attribute. The y axis is years of longevity and the x axis is list percentile.

33 http://rubydatasystems.com/matplotlib_charting html#matplotlib_charting.eg_attributes

8.1. screenshots and notes 187

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.68

p3 seniority list percentage vs. longevity (years), groups [1, 2, 3] ,month 0

longevity (years)

I
w

20%
15%
10%
5%
0%

B A 2 £ ¢
g§ 8 8 8 8 R R B8 8 8 8 2 ¥ 8 8 &
seniority list percentage

Fig. 8: longevity (y axis) vs. proposed list percentage (x axis), month (Fage 18856

The following chart illustrates the average JNUM (job number) indicated with respec-
tive job description labels (y axis) for a proposed list over time. The job description
labels are fully customizable inputs.

36 http://rubydatasystems.com/matplotlib_charting html#matplotlib_charting.eg_attributes

188 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.68

PROPOSAL 1 - AVERAGE JNUM BY GROUP OVER TIME

CaptG4B —— Group 1

—— Group 2
Group 3

Capt G4 R

Capt G3 B

Capt G2 B
CaptG3 R
Capt G2R
FiO G4B

FIO G4R

FiO G3B
FiO G2B
CaptG1B
FlO G3R
FlO GZ2R
Capt G1R

FiO G1B

DATE

Fig. 9: average group job level"2ee 189.57

This is the same chart with comparative standalone average job levels added with the
dashed lines.

Proposal 1 - average jnum

Capt G4 B
CaptG4 R
CaptG3B

Capt G2 B

Capt G3R
Capt G2 R

FiO G4B

FIO G4R
FIO G3B
Flo G2B
Capt G1 B
FIO G3R
Flo G2R
CaptG1R

FiO G1B

2014 2019 2024 2029 2034
date

Fig. 10: average group job level with standalone comparison®?ee 19038

57 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.group_average_and_median

8.1. screenshots and notes 189

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.group_average_and_median
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.group_average_and_median

seniority_list Documentation, Release 0.68

Specific employee numbers may be selected for individual plots. The plots reflect an
average for that percentage level on the list for the respective employee group due to
the fact that the list is organized in a stovepipe fashion.

In the following chart, the display indicates the job level progression for three employ-
ees from three different groups. These employees are next to each other on the proposed
list. The three employees initially hold three different jobs from their original lists. The
employees which initially hold a higher level job are protected in that job until his or
her new list cohorts “catch up” through the job vacancy process. At that point, all three
track together until retirement.

Proposal 1 - jobp
CaptGAB eummm employeel
CaptG4R === employee2
CaptG3B employee3

captG2B
CaptG3R J—
CaptGZR

F/O G4B
FlO GAR

FlO G3B

FiO G2B
Capt G1B
FlO G3R
Flo G2R
CaptG1R
FiO G1B
Flo GLR

FUR

2015 2017 2019 2021 2023 2025 2027
date

Fig. 11: percentage within job level indicating no bump no flush effectPae 1903

Because a compensation attribute is built into the model, it is possible to study the
change in the flow of money among the workgroups. In the chart below, a normalized
compensation comparison is made with standalone figures. The model assumes the
same level of compensation pre- and post- integration. This result could also be thought
of as a job quality change measurement.

38 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.group_average_and_median
59 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp

190 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp

seniority_list Documentation, Release 0.68

m ' ke
Qggéﬁﬁﬁﬁﬁfﬁﬁﬁﬁfﬁ?xf
W?T |

i

dLE

0

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
date

Fig. 12: group compensation within an integrated proposal vs. standalone, delayed implementa-
tionPage 191, 60

Several attributes may be loaded into the function which produced the chart above.
Here is another example of the same charting function which compares list seniority
percentage, native vs. proposed ordering.

p3 vs. standalone SPCNT

i
WN e

= _ "
=3

differential

. iiiii!iii@@11?1$ﬁﬁ

2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035

8 2024
%

Fig. 13: employee group list percentage differential: integrated proposal vs. standalone®!

Actual attribute value ranges (as opposed to differential values) for each employee
group may be plotted as well. This chart compares the placement of employee groups
within an integrated data model for each year through 2035 (x axis) in terms of list
percentage (y axis, most senior at the top), with implementation of the integrated list
in late 2016. Other dataset attributes may be easily displayed, such as job category
ranking or career pay.

60 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_diff_boxplot
61 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_diff_boxplot

8.1. screenshots and notes 191

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_diff_boxplot
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_diff_boxplot
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_diff_boxplot

seniority_list Documentation, Release 0.68

p1 seniority list percentage

"

100%:

i

!

absolute values

034
il
W e

2013
2014
2015
2016
2017
018
2019
2020
2021
2022
2023

T 2020
2025
2026
2027
2028
2029
2030
2031
2032

2033
2035

Fig. 14: absolute (actual) group list percentage within an integrated proposal, over timeFaee 19262

The vertical stripplot offers another way to visualize employee group distribution.

2000

4000 j

6000 FES

new_order

Fig. 15: group distribution - stripplotPage 193 63

62 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.eg_boxplot

192 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_boxplot
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.stripplot_eg_density

seniority_list Documentation, Release 0.68

Here is a stripplot which reveals the job distribution within correctly sized job level
bands, for a month in the future, for a particular proposal.

Group distribution within job levels, month 40

0

5 Tt L L S

o a CaptG4B
T e— —] CaptG4R
CaptG3 B

"o | captozB

| captG3r

| TR Covt 2R
35

FlO G4B

B0DD hegrmaar—ypr
O

. |FlO G4R
FlO G3B

cat_order

7000 &
]
8000

9000 [

CaptG1B

10000 Fore ~| FIO G3R

B FIO GZR
11000 [

FUR

Group 1 Group 2 Group 3

eg

Fig. 16: group distribution within job level zones, future month, with job level color bands®*

This chart shows the distribution of the employee groups within each job level as it
relates to a proposed seniority ordering. The green markers represent a subgroup of
one of the main groups. This subgroup has special job rights which existed prior to the
integration. The program incorporates and accurately models special conditions.

63 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.stripplot_eg_density
% http://rubydatasystems.com/matplotlib_charting html#matplotlib_charting.stripplot_distribution_in_category

8.1. screenshots and notes 193

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.stripplot_distribution_in_category

seniority_list Documentation, Release 0.68

job disbursement - p1 month 35

Capt G4 B ’
Capt G4 R ,

e *
Capt G3B /

CaptG2B - /

Capt G3R i
Capt G2 R ’ - /
FIO G4B /
———

FID G4R /
FIO G3B 4 /

-
FIOG2B ’ /

CaptG1B ’

FID G3R ,

percentage within job level

’ -
FIO G2 R -
Capt GLR

FIOG1B

FIO GLR

RUR

6000 5000 4000 3000 2000 1000 0
seniority number

Fig. 17: job distribution vs. proposed seniority numberfae 194 65

This is a scatter plot displaying similar information as the chart above, with the added
feature of appropriately colored and correctly scaled job level bands. The 35th month
of the model has been selected for study, which in this case is the first month following
the implementation of the integrated list. The displayed job bands account for job count
changes over the life of the data model and are correctly sized for the selected month.
Each employee group may be displayed separately and a line chart may be drawn instead
of the scatter plot. There are other chart options as well. In this particular presentation,
the green markers again identify a subset of one of the employee groups who possess
special job assignment rights.

85 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

194 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

seniority_list Documentation, Release 0.68

job disbursement - p1 month 35

Capt G
Capt G
Capt G

W s
mmm

1000
Capt G2 B

- - CaptG3 R
2000 /
/ CaptGZR

g /
£ FIO G4 B
@ 3000 -
= / F/OGAR
2 s
S, ’ - FIOG3B
[i+]
=
o
)
4000
FIOG2 B
/ t
5000 * - ; ERF G%IRB
S FIO G2 R
’ c%:t G1R
FiBELR
6000
FUR
6000 5000 4000 3000 2000 1000 (1]

seniority number

Fig. 18: group distribution within job level zones vs. list percentage, starting month?2ee 195 66

Similar to the above chart, with the x axis changed to reflect age:

% http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

8.1. screenshots and notes 195

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

seniority_list Documentation, Release 0.68

job disbursement - p1 month 35

o Capt G4 B
Capt G4 R
Capt G3 B
1000
CaptG2 B
ana » it CaptG3R
2000 B <,
2, ,;.-,,'M'.: AR sy g CEPLGZR
= . .
= . - FIO G4 B
-
@ 3000 7ifc FIO G4 R
o P .
= B Y £ 1 FIOG3B
@ . Aot hevg S PnC o
g . /4 -’ 2 "’ + L
™ - .”’ ’c.‘ e -
000 "‘.*.. "é By J .
HEe TR0 FIOG2B
. ’. . *]
P 0' '{3 oﬁ "
o
" ¢ 9 é "8

g’b
g ’t“. b .‘
5000 ey smWENT s @ -.og 57 = ‘%}r“&g‘.;’..‘ ;;’"’-P.; . . Eﬁ %IRB

. . ‘iuvw«l"ﬂ""“‘ .., FIOG2R
RV RPRFPSIN RN QU NS - zé:t GLR
E’ étR
G000
30 b 40 45 50 55 60 65
age

Fig. 19: group distribution within job level zones vs. age, future monthfaee 19667

..with the x axis changed to reflect years of longevity (in this case, stovepiped, or
ordered, longevity for each group):

67 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.eg_multiplot_with_cat_order

196 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

seniority_list Documentation, Release 0.68

job disbursement - p1 month 35

1000

2000

[=1]
£
=
@ 3000
=
=
=3
=
B /
=) . "
4000 ol “
,' - . Pu
0“ - 4
e -
ﬁ'
-~
B @, o E
5000 - . p
PR
f - o
6000
0 5 10 15

Fig. 20: group distribution within job level zones vs. longevity, starting mont

20 25

longevity (years)

Capt G
CaptG
Capt G

W
mxm

CaptG2 B

CaptG3R
CaptGZ R
FIO G4 B

FIO G4R
FIO G2 B

FIOGZ2B

B

FIOG2ZR
FRelE

FUR

hPagc 197, 68

Differences between list locations for employees with equivalent attribute values but
from different groups may be studied with the cohort_differential chart. In the fol-
lowing example, the longevity attribute for employee group 1 is being compared to
employees from groups 2 and 3. The code finds the list locations of employees from
groups 2 and 3 which match the longevity values from group 1, then displays the loca-
tion differences from the group 1 locations.

%8 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

8.1. screenshots and notes

197

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

seniority_list Documentation, Release 0.68

Proposal p2 - [group 1] - longevity date differential - month 0

—— Group 2
- Group 3

1000 +

500 o

list position compared to cohoerts

-500 —

longevity date

Fig. 21: longevity cohort list location differential (click to enlarge)Faee 19869

Job levels obtained over time may be visually represented by a step-type chart and/or
by a line representing the percentile within that job level.

job level - p1

Capt G4 B
Capt G4 R

Capt G3 B

Capt G2 B

Capt G3 R

Capt G2R

FIOG4B

FIOG4R

FIOG3B

b level

FIOG2B

CaptG1B

FIOG3R

FIOG2R

Capt G1R

— 10012608

FIOG1B
---- 10012608

FOGIR — 20011251
- 20011251

2014 2019 2024 2029 2034 2039 2044
date

Fig. 22: job number and job percentagef?ee 19970

% http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.cohort_differential

198 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.cohort_differential
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp

seniority_list Documentation, Release 0.68

The datasets may be filtered and sliced in many ways to examine and compare target
ranges. This is an example of time slicing, focusing on employees hired in 1989. Note
that the underlying data model incorporated a delayed implementation date of late 2016.
The employee groups operate independently until then.

Capt G4B
CaptG4R
Capt G3B
Capt G2 B
CaptG3R
CaptG2R
FIO G4B
FlO G4R
FIO G3B
FIO G2B
CaptG1B
FlO G3R
FlO GZR
CaptGLR
FIO G1B
FlO GIR

FUR

Fig. 23: time slice example, standalone data is indicated with the dashed lines

Group 1 Proposal AVERAGE JNUM vs. Standalone Data
doh >= 1989-01-31, doh <= 1989-12-31 (dfb employees match dfa filtered group)

= Group 1 Proposal, grpl avg
== Group 1 Proposal, grp2 avg
—— Group 1 Proposal, grp3 avg
Standalone Data, grpl avg
Standalone Data, grp2 avg
Standalone Data, grp3 avg

- - implementation date

2023 2025 2027 2029 2031
date

.Page 199, 71

In this example proposal, a significant loss is indicated for one group while another
group gains. Standalone data is indicated with the dashed lines. Note that the groups
began with nearly identical values at the implementation date. This chart is displaying
a slice of a job rank attribute reflecting employees with a longevity date of 1995 or

earlier.

70 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting. multiline_plot_by_emp
71 http://rubydatasystems.com/matplotlib_charting html#matplotlib_charting.group_average_and_median

8.1. screenshots and notes

199

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.group_average_and_median

seniority_list Documentation, Release 0.68

Group 1 Proposal AVERAGE CAT_ORDER vs. Standalone Data
Idate <= 1995-12-31 (dfb employees match dfa filtered group)

500
—— Group 1 Proposal, grpl avg
= Group 1 Proposal, grp2 avg
Standalone Data, grpl avg
Standalone Data, grp2 avg

- - implementation date

1000

1500

2000

2500
201 2019 2024 2029 2034

date

Fig. 24: longevity filter example, standalone data is indicated with the dashed lines"?¢¢ 200: 72

Here is a chart utilizing the compensation section of the data model. The y axis repre-
sents monthly compensation in thousands of dollars while the x axis indicates percent-
age on the list. In this case, the plots represent results for several individual employees.

mpay - Proposal 1

30

25

20

15

10 = Employee 1
= Employee 2
—— Employee 3
= Employee 4

5

10 0.8 0.6 0.4 0.2 0.0

spcnt

Fig. 25: monthly compensation (y axis) vs. list percentage, selected employees?2e¢ 201: 73

72 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.group_average_and_median

200 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.group_average_and_median
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp

seniority_list Documentation, Release 0.68

Parallel coordinates type charts are very good at comparing positional differences, such
as when comparing list percentage or numerical job levels.

For each of the subplots below, standalone list percentage is indicated on the left vertical
line. The top row is for month zero, and the second and third rows are for future months.
The other vertical lines represent the list percentage for those same employees within
different proposals. Any number of groups and future months may be plotted and the
left vertical line can be set to represent any of the proposals.

Group 1 SPCNT 0 mths Group 3 SPCNT 0 mths

100.0% B——1 100.0%
List3 Listl StandAlone List2 List3 Listl StandAlone Listz List3 Listl
Group 1 SPCNT 60 mths Group 2 SPCNT 60 mths Group 3 SPCNT 60 mths

95.0%
100.0% 100.0% 100.0%
StandAlone List2 List3 Listl StandAlone List2 List3 Listl StandAlone List2 List3 Listl

Group 1 SPCNT 120 mths Group 2 SPCNT 120 mths Group 3 SPCNT 120 mths

100.‘ 0% 100.0% 100.0%
StandAlone List2 List3 Listl StandAlone List2 List3 Listl StandAlone List2 List3 Listl

Fig. 26: parallel coordinates, group list percentage, 3 proposals vs. standalone, selectable time

period’

Same as above, with percentage within job level attribute. (May not be the same pro-
posal as used for chart above)

73 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.multiline_plot_by_emp
74 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.parallel

8.1. screenshots and notes 201

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.parallel
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.parallel

seniority_list Documentation, Release 0.68

Group 1 JOBP 0 mths Group 2 JOBP 0 mths Group 3 JOBP 0 mths

Capt G4B [T T Capt G4 B ——_1 Capt G4B
O e — CaptG4R i% Capl G4 R
Capt G3B e —— Capt G3B — Capt G3B
CaptG2 B CaptG2 8 —— CaptG2B
Capt G3R CaptG3R Capt G3R
Capt G2 CaptG2R Capt G2R —
FIO G4 FiO G4B FIO GAB
FIO G4 FIO G4R FIO G4R
Fi0 G3 FiO G3B Fi0 G3B —
Fi0 G2B FiO G2B Fi0 G2B
CaptiGlB CaptG1B CaptGLB
FIO G3R FIO G3R ————1— FIO G3R
FiO G2R FI0 G2R FIO G2R
CaptG1R CaptG1R ﬁ___ Capt G1R
FIO G1B FIO G1B | | FIO G1B
FIO G1R FIO GLR | | FIO GLR

StandAlone List2 List3 List1 StandAlone List2 List3 Listl StandAlone List2 List3 List1

Group 1 JOBP 60 mths Group 2 JOBP 60 mths Group 3 JOBP 60 mths

Capt G4 B Capt G4 B CaptG4B
Capt G4 R CaptG4R Capt G4 R
CaptG3B T | _—— capteae
CaptG2B Capt G2 B = - Capt G2B -
CaptG3aR Capt G3 R (I " CaptG3R
Capt G2 R CaptG2R e Capt G2 R
FIO G4B FiO G4B FIO GAB
FiO G4R Fi0 G4R FIO G4 R
FIO G3B FiO G3B FIO G3B
FIO G2B FiO G2B FIO G2B
CaptG1B CaptG1 B % CaptGLB
FIO G3R oo - - FIO G3R FIO G3R
FIO G2R FIO G2R FIO G2R
CaptG1R CaptGLR CaptGLR
Fi0 G1B FiO G1B FiO G1B
FiO GLR Fi0 GLR FIO GLR

StandAlone List2 List3 List1 StandAlone List2 List3 Listl StandAlone List2 List3 Listl

Group 1 JOBP 120 mths Group 2 JOBP 120 mths Group 3 JOBP 120 mths

CaptG4B Capt G4 B CaptG4B
Capt G4 R CaptG4R Capt G4 R
CaptG3B CaptG3 B CaptG3B
Capt G2 B Capt G2 B Capt G2B jg=
Capt G3R CaptG3R Capt G3R
Capt G2R g CaptG2R Capt G2 R
FIO G4B FIO G4B [& FIO G4B
FIO G4R = FIO G4R FIO G4R
FIO G3B FiO G3B FIO G3B |~
FIO G2B FiO G2B Fi0 G2B [
Capt G1B CaptG1B Capt GLB
FIO G3R Fi0 G3R FIO G3R
FiO G2R Fi0 G2R FIO G2R
CaptG1R CaptGLR Capt G1R
FIO G1B FiO G1B FIO G1B
FIO G1R FIO GLR FIO GLR

StandAlone List2 List3 List1 standAlone List2 List3 List1 standAlone Listz List3 List1

Fig. 27: parallel coordinates, group job levels, 3 proposals vs. standalone, selectable time pe-
rio dPagc 202,75

List percentage differential over time may be analyzed in another format utilizing differ-
ential binning, or counting the number of employees within various levels of percentage
change. The following chart displays the annual differential between proposal “p1” and
standalone data, as it applies to employee group 2.

75 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.parallel

202 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.parallel
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.parallel

seniority_list Documentation, Release 0.68

Group 2, p1vs standalone
SPCNT percent differential bin counts

1000
Percentage Bins

Gain Loss
N 25% @ EEE 25%
BN 50% EE 50%
Bl 7.5% 5%
= 10.0% 10.0%
1 125% 125%
B 15.0% 15.0%
I 17.5% A7.5%
I 200% 20.0%
{ =3 25%
3 25.0%
. 275%
I 300% DN 30.0%
O 25% [325%
0 3%0% [0 35.0%
[375% [375%
B 400% N 40.0%
B 425% BN 42.5%
O 450% [0 45.0%
[475% [47.5%
O 50.0% [50.0%

500 4

I0TnnEnnn

—500

-1000 o

Fig. 28: annual percentage differential bin counts, revealing loss in list percentage up to 50% for
rnany yearSPage 203,76

This type of chart, along with many of the other built-in charts, may easily be set to
display data which has filtered by up to three attributes. The chart below is showing
differential in list percentage at retirement for employees belonging to employee group
2.

76 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.percent_diff_bins

8.1. screenshots and notes 203

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.percent_diff_bins
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.percent_diff_bins

seniority_list Documentation, Release 0.68

Group 2, p1vs standalone
SPCNT percent differential bin counts
ret_mark == 1

100 o

Percentage Bins

Gain Loss
. 25% . 25%
B 5.0% 5.0%
 75% 7.5%
= 10.0% 10.0%
O 125% -12.5%
l 15.0% 15.0%
mm 175% A75%
I 20.0% 20.0%
== 25% 225%
I 25.0% 26.0%
B 275% 275%
I 30.0%
= 25%
o 35.0%
[375% 4
B 400% [400%
B 425% EEE 425%
O 450% [0 450%
[475% [475%
[500% [500%

popnmngnn

25

gna
oy
oo o
& & &

[
e
g
&

=50

75

—100 -

Fig. 29: annual percentage differential bin counts, measured at retirement2e¢ 20477

This is one chart from a set of charts representing annual retirement data for the em-
ployee groups. The bars indicate percentage of original group count retiring each year
and the job level held at retirement.

Proposal 1 group 1

Lo% [CaptG4B
BN Capt G4R
2.0% BN CaptG3 B
= [CaptG2B
< 30% BN Capt G3R
& B CaptG2R
S 40% I F/O G4B
g oo B F/O G4R
g EEE F/O G3B
5 0ot I F/IO G2B
B F/O G3R
7.0% B F/IO G2R
I FUR
8.0%
e S N N L L L LR R
RRRRRRRRRRRNRRSRRSSSSSSRRSRRS8R
year

Fig. 30: retirement percentage per year including retirement job levels’

7 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.percent_diff_bins
78 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_grouping_over_time

204 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.percent_diff_bins
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_grouping_over_time

seniority_list Documentation, Release 0.68

Rows of colors charts may also be produced. In the following chart, each color rep-
resents an employee group or furloughees. As with most of the other program charts,
this type of chart may be quickly customized to present various data for any month.

Proposal 1: month 22

I Group 1
. Group 2
B Group 3

120 per row

BREEBEaA RSN S U YRR SRR S BN NN B NN EE S EREE R S v wonbwnme

Fig. 31: group distribution, future month - color rows chart?e¢ 20579

How are jobs within a job level distributed? This is a rows of colors chart very similar
to the age-percent chart above.

79 http://rubydatasystems.com/matplotlib_charting html#matplotlib_charting.rows_of_color

8.1. screenshots and notes 205

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color

seniority_list Documentation, Release 0.68

Proposal 1 month 22: Capt G2 B job distribution

120 per row

RS EEaEh S S B Y N B RS BN BN R BN BN REEREBcmummr wm e o

Fig. 32: single job level distribution by group, future month - color rows chartPage 206. 80

How are all the jobs distributed?

Proposal 1: month 22

CaptG4B
CaptG4R
CaptG3 B
CaptG2B
CaptG3R
Capt G2 R
FlO G4B
FIO G4R
FlO G3B
FlO G2B
CaptG1B
FIO G3R
FIO G2R
FUR

INRnonnunninag

120 per row

R EE B e B B R P S Y N RS BB B R RN B BB OF R EERF B v uombunro
-

Fig. 33: all job distribution, future month - color rows chart®!

80 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color
81 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color

206 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color

seniority_list Documentation, Release 0.68

Finally, show only the jobs assigned to one employee group.

Proposal 1: month 22

BN CaptG3B
1 1 1 1 Capt G2 B
N CaptG3R
BN Capt G2R
RO G3B
FiO G2B
B F/O G3R
FIO G2R
N FUR

120 per row

RS s S LN S Y Y N B S N BN R SRS R RN FBcaumns v e o

Fig. 34: job distribution, future month, single employee group - color rows chart"aee 20782

What is the actual count of jobs held within each job level by each employee group over
time? In the charts below (an excerpt of the output), modeled job counts for a proposed
integration are represented by dashed lines against a baseline (normally standalone)
shown with the solid lines. The total count of jobs within a given job level is represented
with the green lines. This chart type is closely related to the job transfer type chart
described below.

82 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color

8.1. screenshots and notes 207

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color

seniority_list Documentation, Release 0.68

Group 1 Capt G2 B Group 2 Capt G2 B Group 3 Capt G2 B

date date date

Group 1 Capt G3 R Group 2 Capt G3 R Group 3 Capt G3R

M5 W7 M9 WL M2 MBS N7 0 M5 W7 WIS D2 W23 N5 AT M2 M5 01T D19 W2 W3 W5 N7 DM
date date date

Group 1 CaptG2R Group 2 CaptG2ZR Group 3 CaptG2R
0

200
o0 00
&0 600
0 500
00 00
0 300
0 0

100

100

0 £ 0
215 217 M9 W21 M3 25 T 029 M5 M7 W19 W21 M3 W5 027 A2 M5 MIT M9 021 A3 WS M7 029
date date

Fig. 35: job counts for three job levels (horizontal alignment) for three employee groups (vertical
alignment) - dashed lines are the outcome counts for an integration proposal?ae 208,83

This chart displays the average years spent in the various job levels for an employee
group within a proposal using the basic job level model. The results are grouped by
quantiles. There are eight job levels within the model while using the basic job level
mode in this example. The number of quantiles for the study may be changed easily.

83 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting job_count_charts

208

Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_charts
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_charts

seniority_list Documentation, Release 0.68

years in position, 40-quantiles

WO~ B Lap

Capt G4
Capt G3
Capt G2
FIO G4
F/IO G3
FIO G2
FUR

quartiles

EBBYUEREBHREEENERNENRE
I

8

25 20

years

Fig. 36: single group years in position, 8 job levelsF?ee20% 84

Same as above, except using an enhanced job level model. The process to change
between basic and enhanced job level mode is trivial. The enhanced job level mode
will split the major job levels and allows more detailed job level ranking and ordering.
The colors representing the job categories are fully customizable.

84 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_years_in_position

8.1. screenshots and notes 209

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_years_in_position

seniority_list Documentation, Release 0.68

years in position, 40-quantiles

Capt G4 B
Capt G4 R
Capt G3 B
Capt G2 B
Capt G3 R
Capt G2 R
FIO G4B
F/O GAR
F/IO G3B
FIO G2B
CaptG1B
F/IO G3R
F/IO G2R
FUR

EBEERNEGREREE g oumnrwnm

quartiles

EBBYLREEKREBBNERRER
SRNRRRNRNNenng

8
]
3

Fig. 37: single group years in position, 16 job levelsFaee 210-85

The differences between quantile years in position may be studied as well.

years differential vs standalone, 40-quantiles

Loss

Gain

CaptG4 B
Capt G4 R
Capt G3 B
Capt G2 B
Capt G3 R
Capt G2 R
FIO G4B
FIO G4R
FIO G3B
FIO G2 B
CaptG1B
FIO G3R
FIO G2 R
Capt G1R
FIO G1B
FIO G1R

GRERES vowouswnr

BENS

quartiles

BUYYEREBREBENBRNENES
CHERRNRRIRnanng

10 10

years

Fig. 38: years in position gain or loss vs. standalone, by quantile, 16 job levels®

85 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_years_in_position
8 http://rubydatasystems.com/matplotlib_charting html#matplotlib_charting.quantile_years_in_position

210 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_years_in_position
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_years_in_position

seniority_list Documentation, Release 0.68

The jobs available to each group will change when operating within an integrated list.
The job transfer charts reveal how they will change over time.

Employee group job transfer, integrated vs standalone

o
@0 [CaptG4B
20 . CaptG4R
0 B CaptG3B
[CaptG2B
B CaptG3R
. CaptG2R
= FIO 4B
= O G4R
= FO G3B
= FIo G2B
. CaptG1E
= FO G3R
= FO G2R
B Capt G1R
= FO GLB

FIO GLR
= FUR

change in job count

Bff AR EE R EYEREERRREEREEEERRBER: R
date

implementation date

Fig. 39: separate group job count changes over time, integrated vs. standalone, delayed implemen-
tation date, 16 job levels®’

87 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_transfer

8.1. screenshots and notes 211

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_transfer
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_transfer

seniority_list Documentation, Release 0.68

Employee group job transfer, integrated vs standalone

b
[0 Capt G4
I CaptG3
I Capt G2
0 FO G4
Il FO G3
0 Fo G2
[Capt G1
Il FO Gl
. FUR

change in job count

date

Fig. 40: same as above, with 8 job levelsPe° 21288

Closely related to the above information is an analysis of the change in time spent in
each position per employee. This scatter chart displays months in position differential
between models. Each dot represents a change in the number of months spent in a job
level for those employees who do in fact experience a change. There may be multiple
dots positioned vertically for the same employee, but the monthly gains and losses for
the same employee will always total zero. The differential is indicated with the y axis,
and the x axis represents employee percentile position within an integrated list, most
senior to the right.

88 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_transfer

212 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_transfer

seniority_list Documentation, Release 0.68

Months in job differential, proposal 1, group 2

150

150

(=2
L= - - L L

months differential
=

-100 -100

-150 -150
100% 95% 90% 85% B0% 75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5% O%%

proposed list percentage

Fig. 41: time in job differential for job levels 1 through 10, indicating more time spent in lower
level jobs overall (job colors above the line are generally a lower rank than below the line)?aee 213- 89

Comparisons between proposals for individual employees are simple to perform. This
is an example of the same employee under standalone and three other proposed inte-
grated lists. The different paths are affected by no bump, no flush, a pre-existing special
condition, and other prospective conditions.

8 http://rubydatasystems.com/matplotlib_charting html#matplotlib_charting job_time_change

8.1. screenshots and notes 213

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_time_change
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_time_change

seniority_list Documentation, Release 0.68

Fig. 43: career progression with various proposals, single employee, global job ranking

JOBP

Fig. 42: career progression with various proposals, single employee, job levels

Capt G4 B
CaptG4 R
CaptG3B
Capt G2 B
Capt G3 R
Capt G2 R
FO G4B
FO G4R
FiO G3B
FiO G2B
CaptG1B
FlO G3R
FlO G2R
CaptG1R
F/lO G1B
F/O G1R

FUR

Employee < number> - JOBP

2015

2017 2019

DATE

2021

2023 2025

Page 214, 90

Here is another example, this time measuring the different outcomes for another em-
ployee with the cat_order, or global job rank attribute. The outcomes diverge at the
modeled implementation date in late 2016.

global job ranking

2000

2250

500

2750

=1
2

3250

3500

avso

pl
p2
p3

standalone

Employee 10014345 - global job ranking

=

2014

2015

2016

217

2018
date

2019

2020 021

Page 215, 91

%0 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.single_emp_compare

214

Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.single_emp_compare
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.single_emp_compare

seniority_list Documentation, Release 0.68

The next two charts indicate each employee’s percentage on the list at retirement and
the month in which it will occur, for a given proposal or standalone.

p1 retirement date vs. seniority list percentage, groups [1, 2, 3] at retirement
T T G T I . F S ¥ : et i]
5%
10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
100%

seniority list percentage

-~ & AN o m =~ @& A W m =~ & AN b o;m o~ o AN W
§ § § 3 4 8 8§ & § 83 8 &8 8 8 8§ 8 8 8 *

Fig. 44: list percentage at retirement, by group (x axis is month number)Paee 21592

1 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.single_emp_compare
92 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.eg_attributes

8.1. screenshots and notes 215

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.68

p1 retirement date vs. seniority list percentage, groups [2] at retirement

it Lt o) PR, e Thgel
5% e 1S .

10% -E_;“ PR

15% . Ll

20% B 1

25% "_ﬁ -2
30% ""‘

o] .
2 35% < =
T 40% Y
S 45% :
@ -
‘; 50% - .Sg 2
<. 5% e
5 eo% ¥R
é 65% IR
T0% .:l-_.:l;
. k.
5% _,{-:-.:
80% e
85% F
90%
95%
100% A A IS A
o o] el o ~ o el oy hind o] el o~ ~ o W
§ § § § 88§ § 8§88 8§88 8§88 8§ s &8 &
retirement date
Fig. 45: list percentage at retirement, single group (2)P2e¢216.93

Quantile membership lines and bands may be used to compare population percentage
with attribute levels. The chart below displays the list percentage at retirement for
members of group 2 who have a longevity date of 1999 or earlier with the group 1
proposal. The addition of quantile bands reveals that 50% of that group (right chart
scale) will retire within the top 31% of the proposed integreated seniority list (left
chart scale).

%3 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.eg_attributes

216 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.68

p1 retirement date vs. seniority list percentage, groups [2] at retirement

Idate <= 1999-12-31

e s 5 5o s 5 5 58 -
S & & & & & & & &
g & & S & & g & =
0% \ , \ n , TR _ -
u . -
- - - i - - S
7 . .. 10.0%
10% + = - -
T 20.0%
4 & . =
- i . . - ¥ o
20% - 5 i [30.0%
*ey, - . .
b e fee N [40.0%
.y b . .
30% = . .
3) s I 50.0%
oA ’
T At b L
@ i Tae 60.0%
S 400 4 e ¥ Iy
B % oot : .
3 g e [70.0%
= oee o e
= 50% 3, = - Cc, bl &g
= - % 5 - - 80.0%
£ Y -~ S J= & . 80.0% e 2
= - ’:", * =y . .
s e . .
S 60% TSR
1 ~ = [90.0%
. - -
o | e s
0% e
B .
LR
80% - .
-
b [100.0%
90% -
100% T T T T T T T T T T T T T T T T T
i=] i Qo N o o & o v vl = > @« ~N © w =
o3 o) & o~ & & fay) aYy aly ayy -~ .~ = = = =
& & & & & & & & & & & & & & < & 8

retirement date

Fig. 46: list percentage at retirement with quantile bands, single group (2

)Page 217, 94

Using the same conditions as above shows that group 1 fares much better, with 50%
retiring within the top 5% of the proposed integrated seniority list. The quantile mem-
bership bands are available for any attribute comparison and may be set to correspond
to the entire combined population or only to the displayed group(s).

4 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

8.1. screenshots and notes

217

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.68

p1 retirement date vs. seniority list percentage, groups [1] at retirement
Idate <= 1999-12-31

100,95,

0%

10%

20%

30%

40% o

seniority list percentage

[100.0%

225
023
21
2017 -
15 4

T T
=] ~
& &

&

retirement date

§ &

239 4
D37 1
2035 4

Fig. 47: list percentage at retirement with quantile bands, single group (1)Faee 218.95

This is a scatter differential chart which can compare several attributes. In this exam-
ple, seniority percentage at retirement vs. proposed list order is represented for three
separate groups.

%5 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.eg_attributes

218 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.68

Proposal 1 differential: spent

30.0%
1
2
20.0% 3

10.0%

0.0%

-10.0%

avs

-20.0%

-30.0%

-40.0%

-50.0%
16000 14000 12000 10000 8000 6000 4000 2000 o]

orderl

Fig. 48: group list percentage vs. standalone at retirement??ee 21996

The same chart as above, with a polynomial fit applied. This helps to simplify the
information and may be used with the editing tool.

10.0% Proposal 1 differential; spcnt

0.0% /
‘B

-10.0% N\ s

N / |

% -20.0% /

-30.0% | /
-40.0% \ /

-50.0%
14000 12000 10000 8000 6000 4000 2000 0

orderl

Fig. 49: polynomial regression applied. . . Page 220.97

% http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.differential_scatter

8.1. screenshots and notes 219

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.differential_scatter
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.differential_scatter

seniority_list Documentation, Release 0.68

The two charts above had the x axis scaled to represent the proposal list order. The
chart below organizes each group according to their native list percentage.

10.0% Proposal 1 differential: spcnt

0.0%

-10.0%

avs

-20.0%

-30.0%

-40.0%
1o 0.8 0.6 0.4 0.2 0.0

sep_eg_pcnt

Fig. 50: same as above except using separate group native list percentage as x axisFaee 220-98

The next chart is related to the charts above. However, instead of showing results for
each employee at retirement or monthly snapshop data, this chart indicates ranges of
differential results over time. The bands of color within each plot represent the results
for the same employee group under different list orderings and conditions. The chart
below is showing data for group three under proposals one, two, and three.

7 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.differential_scatter
%8 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.differential_scatter

220 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.differential_scatter

seniority_list Documentation, Release 0.68

Employee Group 3 cumulative career pay differential

300
200
100
cpay_pf
0 cpay_p2
cpay_p3
=100
=200
=300
3 5]] 0 A b 5] &
DA T - L

date

Fig. 51: the colored bands represent different proposals, not different groups (a negative number
indicates a change toward the top or senior levels of the list)Paee 22199

This type of study can look at other attributes and has an option to plot the mean of the
data. Here is a job level differential chart. Note that as in the chart above, a negative
number indicates an improvement to a higher level job (the best jobs have the lower job
level numbers).

9 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.diff_range

8.1. screenshots and notes 221

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.diff_range
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.diff_range

seniority_list Documentation, Release 0.68

Employee Group 1 percentage within job level differential

08

06

— jobp_p1
04 jobp_p?2
jobp_p3

0.2

0.0

0.2

2015 2017 2019 2021 2023 2025 2027 2029
date

Fig. 52: average job transfer between the employee groups with various proposals’age 222 100

This is a time-series chart with job level bands and a headcount line. The headcount
line indicates the extent of the remaining affected employees (present at the time of the
merger) each year. The job level bands are responsive to the model fleet change inputs
within the configuration file.

cumulative job level bands, full active count

- 1
- - 2
2000 e
v 3
k- L
. 4
* ‘ 5
4000 .
.' 6
. 7
./ 8
r
6000 . 9
L
;! 10
K 1
8000 R 1
! 13
+
. 14
10000 'l 15
e 16
L’ - == headcount
12000 #*
2014 2019 2024 2029 2034 2039 2044 2049

Fig. 53: job level bands over time (this example indicates fleet changes until 2019)F2ge 223. 101

100 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.diff_range

222 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.diff_range
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands

seniority_list Documentation, Release 0.68

The next two charts show how seniority list percentage does not always equate to the
same job bidding capability due to no bump, no flush and other conditions. The chart
below includes three employees placed next to each other on an integrated proposal
with an implementation date in late 2016. After that point, the three lines representing
career progression as list percentage are superimposed.

seniority list percentage - proposal p1

0%
5%
10%
15%
20%
25%
30%
35%
40%
45%

50% /

55%

seniority list percentage

60%
65%
0%
75%

80%
—— 10013738
—— 20011150
90% 30010419
95%

85%

§

2015
217
19
2021
2023
2025
2027

date

Fig. 54: example career percentage, 3 separate group employees (superimposed, nearly identical

percentage over time

)102

This chart reveals a more accurate model of what would occur in terms of jobs avail-
able to these three employees. The thin vertical dashed line represents a modeled im-
plementation date. Each group operates independently until that time. The black line
represents an employee with a pre-existing special condition, allowing the large jump
in job levels. The blue line represents the employee who holds a higher ranked job at
implementation which is protected until his retirement. Employees holding a job due
to no bump, no flush protection or special job assignment rights remain in that job until
his list partners from other group(s) “catch up”. Once the employees have reached the
point in time where the same bidding opportunities exist for all three, they then move
together in terms of list percentage, if they have not already retired.

The program model accurately accounts for all of these conditions.

101
102

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp

8.1. screenshots and notes

223

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp

seniority_list Documentation, Release 0.68

job level progression

—— 10013738
—— 20011150
— 30010419
active count

1000

2000

3000

4000

5000

6000

CaptG4 B

Capt G4 R
CaptG3 B

Capt G2 B

- Capt G3 R

Capt G2 R

FO G4B

FO GAR
FIO G3B

FIO G2B

CaptGl B
FIO G3R

FIO G2R

Capt GL R
FIO G1B

2021 2023 2025
date

2029

Fig. 55: same employees and list as above, career progression through job levels with effects of

special conditions and no bump no flush. y axis is arranged by job order number. ..

Page 224, 103

This type of chart may display selected groups of employees as well. This chart is
showing projection for workers from one of the merging groups who have special job
assignment quotas which pre-exist the merger. Each line represents the modeled career

path for an individual worker.

103 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting job_level_progression

224

Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_level_progression
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_level_progression

seniority_list Documentation, Release 0.68

job level progression

1000

2000

3000

4000

5000

6000

date

Capt G4 B
Capt G4 R

Capt G3 B

Capt G2 B

Capt G3R

Capt G2R

F/O G4B
F/IO G4AR

FIO G38B

F/IO G2B

CaptG1B
FIO G3R
FIO G2R

CaptG1 R
F/IO G1B

Fig. 56: a sampling of job progression plots belonging to a subset group with pre-existing job as-

signment quotas. Note the vertical lines representing a jump up to a level to satisfy a quota.

Page 225, 104

Another built-in chart type available with the seniority_list program is the quantile-
groupby chart. Initial lists from each employee group may be segmented into equal-
sized segments (quantiles) and the metrics associated with the employees belonging
to those segments may be analyzed in various ways over time. This method provides
information concerning the career progression experience of stratified sections of each
employee group over many different metrics. The chart below is displaying the job
category ranking results for an employee group split into 40 quantiles, or 2.5 percent
bands, for a standalone (unmerged) employee group. The data shown here represents
the results for the last employee within each quantile. Other methods, such as quantile
average or median are also available for display.

104

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_level_progression

8.1. screenshots and notes

225

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_level_progression
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_level_progression

seniority_list Documentation, Release 0.68

quantile

cat_order for each

Fig. 57: data representing the job category ranking of the last employee within each of 40 quantiles
from the initial employee group population, standalone scenario.Page 226 105

Here are the results for the same employee group when combined with other employee
groups using a proposed integration list and conditions. The results following the im-
plementaion date in late 2016 indicate much lower job opportunities and long-term job
level stagnation for this workgroup. This charting function is capable of measuring
other data such as pay, list percentage, and jobs held over the life of the data model.

105 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

226 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

seniority_list Documentation, Release 0.68

egs: [2] 40 quartile cat_order by last

quantile

cat_order for each

Fig. 58: data representing the job category ranking of the last employee within each of 40 quantiles
from the initial employee group population, integrated scenario.fage 227. 106

When analyzing quantile groupings with the job category attribute, it is possible to
show integrated job level zones in the chart background. Here is the same analysis as
above with the addition of job bands.

106 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

8.1. screenshots and notes 227

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

seniority_list Documentation, Release 0.68

egs: [2] 40 quartile cat_order by last

Capt G4 B

Capt GAR
Capt G3 B

500

1000
Capt G2 B

1500

Capt G3R
2000

Capt G2R

quantile
™
&
&
e

FIO G4AB

8
8

FIO G4R
FIO G3B

@
&
=
S

cat_order for each

g

FIO G2B

4500

Capt G1B
FIO G3R

5500 FIO G2R

Capt GLR
FiO GLB

6000

date

Fig. 59: accurately proportioned job levels assist in understanding employee group career progres-
SiOH.Page 228,107

The plot line colors may be pulled from a customized matplotlib colormap when plot-
ting a single employee group, which adds further qualitative insight to this type of
analysis. This example clearly reveals an employee group overwhelmingly disadvan-
taged with a proposed integration. While the employees are protected with “no-bump,
no_flush” provisions (cannot normally be displaced from a job held at time of inte-
gration), due to poor placement within an integrated list, this group is relegated to the
bottom sections of each of the job levels for quite some time with greatly diminished
career advancement opportunities.

197 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

228 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

seniority_list Documentation, Release 0.68

egs: [2] 250 quartile global job ranking by median

Capt G4 B

—— CaptG4R
Capt G3 B

500

1000
Capt G2 B

-
@
=1
=]

Capt G3 R

g
(=]

Capt GZR

8
(=]

FiOG4 B

FIOG4 R
FIOG3B

Fi0OG2B

global job ranking for each quantile

CaptG1B
ngﬁﬂR

FlOG2R

Capt G1 R
FOG1E
FIOGTR

implementation date

Fig. 60: color spectrum line plots offer additional insight concerning the short- and long-term
effects of proposed integrated list scenarios.Paee 229 108

Quantile progression for the same employee group under different integrated list pro-
posals may be directly compared by plotting the output from two different data models
within the same chart. In the following example, the lines represent median job value
ranking for employees grouped into 10 population quantiles. The progression lines
diverge after the implementation date, with the solid lines representing standalone pro-
gression and the dashed lines representing the progression of the same quantile groups
under a selected integration proposal. Clearly the selected proposal would cause major
career stagnation and disruption for the employee group represented here.

108 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

8.1. screenshots and notes 229

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

seniority_list Documentation, Release 0.68

egs: [2] 10 quantile global job ranking by median

global job ranking for each quantile

i
2014 2019 2024 2029 2034
date

Fig. 61: dataset comparative line plots reveal differences in career progression for the same em-
ployee group under 2 different integrated list scenarios. The up and down trace for quantile group 2
is a result of applying a conditional job assignment rule with the integrated list proposal.Page 230 109

This chart represents separate group colored job (jnum) bands. The y axis represents
the employee group count. The slight variations in job band thickness are due to mod-
eled fleet changes. Employee career advancement tracks would all be contained within
these bands, passing upward and to the right as employees age and become more senior.

109 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

230 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

seniority_list Documentation, Release 0.68

[BB oo~ o ? W N
FRERES >

=

S

IS
s
c
=

CHERTRRERNERnnnn,

=
o

B
IS
8
B8
R
B
B
B
g
B
8
B
2
B
5

Fig. 62: separate group job bands pre-integratione¢ 23! 110

Here are the job bands for the same separate group as in the above chart, as they are
affected when a combined list proprosal is applied. The horizontal section at the left
of the chart reflects a delayed implementation date.

110 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.job_count_bands

8.1. screenshots and notes 231

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands

seniority_list Documentation, Release 0.68

500

5
=
=

1000

1500

2000

=
w

2500

=
[T IS

JERURRERNnNnenne

=
o

B
g
=
B
B
B
B
B
g
B
2
B
3
B
&

Fig. 63: separate group job bands post-integration (delayed implementation)faee 232 111

This is a slightly different format of the same chart above with the addition of a sample
career advancement track. In this scenario, the job bands “move up” almost at exactly
the same pace as the example career track, meaning little to no job advancement for
the sample employee for many years.

Group 2, emp <number> - all jobs avialable over time - Proposal 3

-

0

'.' === headcount
." A 1
500 e 2
$ 3
o' 4
"
1000 / 5
‘.‘ 6
& "' 7
1500 R i 8
['f' g
‘,' 10
/ 1
2000 / 12
L
J 13
4 14
2500 o 15
L
,o 16
'," === employee <number>
3000
2014 2019 2024 2029 2034 2039 2044 2049

date

Fig. 64: example career advancement through post-integration job bands!!?

T http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.job_count_bands
112 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands

232 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands

seniority_list Documentation, Release 0.68

Here is an example of a separate group’s job bands under a proposal which allows more
rapid advancement. (Notice the higher band levels reaching lower with time.)

Group 1 - jobs avialable over time - Proposal 2

1000

2000

3000

=
BERERECO®NOo RN R

5000

6000

o \6
8000

9000
2014 2019 2024 2029 2034 2039

date

Fig. 65: separate group post-integration job bands indicating overall improvement with furlough
recall!!?

The following quantile change charts indicate relative position change only and do not
directly represent potential job positions due to the effect of no bump, no flush consid-
erations and other special conditions. These conditions are reflected in the “job band”
type charts above. The quantile charts may also be diplayed as percentage band charts.

To use: compare the underlying quantile and year (square grid) with the resultant over-
lying colored grid level as indicated by the legend.

113 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.job_count_bands

8.1. screenshots and notes 233

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands

seniority_list Documentation, Release 0.68

<group name> quartile change over time

result quartile

[E-R - R - B N -

original quartile

RROCORRNNnnnnnnnnnmn

2015 2020 2025 2030 2035
year

Fig. 66: separate group post-integration quantile change over time indicating improvement for
groupPage 234,114

<group name> guartile change over time

result quartile
1

W = o R W e
W oo~ oUW

10

=y
=

original quartile

N]

=
w

[N
=

=
o

=
[=2]

=
=

=
[==]

RROCOANNNNNnnnnnnnnl

8

2015 2020 2025 2030 2035
year

Fig. 67: separate group post-integration quantile change over time indicating large distortion and
loss for group!!®

114 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time
115 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.quantile_bands_over_time

234 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time

seniority_list Documentation, Release 0.68

The slight change in the quantiles representation for a standalone group below is due to
a modeled change in the number of jobs available to that standalone group over time.

<group hame> quartile change over time

result quartile

1
2 1
3 . 2
4 3
5 . 4
6 N 5
7 5
8 - 7

o I 8

2 9

€ e

= = 10

gu = 1

D12

5 . 12
13 . 13
1 e 14
15 15
16 16
17 L7
18 18
19 . 19
2 N 20

2015 2020 2025 2030 2035
year

Fig. 68: separate group pre-integration quantile change over time - same group as previous
chart. . . before operating within combined list!!®

8.2 editor tool

The editor is an interactive tool which allows list adjustments to be made and recalcu-
lated results to be viewed within seconds. The display includes a main display chart
and a horizontal stripplot. The main chart may display a comparative attribute differ-
ential between two integration proposals or display absolute (actual) attribute values
for a single integrated list proposal. Attributes such as list percentage, job levels, or
career earnings values may be displayed for any or all employee groups upon reaching
retirement or for any selected month. Comparisons may be made between proposals
or with standalone data. The tool also includes a display filtering feature, allowing fur-
ther analysis of targeted subgroups, such as employees with high longevity or within a
specified job value range.

The editor tool was designed to easily identify outcome equity distortions associated
with various proposals and to permit simple yet precise corrective editing. Distortions
are identified through intuitive data visualization and corrections are made using the
interactive editor controls and special program algorithms.

116 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time

8.2. editor tool 235

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time

seniority_list Documentation, Release 0.68

To make a corrective edit, the user positions two vertical cursors (lines) on either side
of the target section using the “edit zone” range slider. Then after selecting the appro-
priate employee group, style of adjustment, and direction, a “squeeze” is performed
which has the effect of sliding the target group up or down the proposed list (within
the “edit zone”) while maintaining relative list order within each group. The results of
the move are calculated and displayed for further analysis and adjustment if required.
The stripplot offers a visualization of the density distribution of the groups within the
proposed list order after the squeeze process but before the recalculation. All recalcu-
lations include all of the conditions in the overall model.

The following screenshot of the editor shows it in scatter mode and loaded with a list
percentage at retirement differential chart described earlier.

squeeze extra filters animate proposalisave display sizelalpha grid/bg hover density
S0z type emp group sqz dir (] use extrafilters
log v 2 v uz> v display attr. ¥ at_retire_only
spont v menth oper month num
W scatter
squeeze: 28 5=] 0 v
(| poly fit
[mean yiype stype
< s SQUEEZE 0 savgol at v pops v

< >
CALC

edit range values: 2159 .. 4136

p1vs standalone SPCNT diff values
C

-

["I"
100%
00 P i
I ° o v b
. . »
"yl " LR - 1
. N ‘n w’
: A TN e
0mt, B : - ST
N R S 4
e . N,
‘ T, D e teV
(T nf
004 Ay W Lt
200% e deyrree o =
S .':';'.'-t-’\--.') oy
toel -.",_{Hl-'n\,'.',..'. et
30.0% 1 : “I-'al‘1ls PR Joom. ",
. T

400 1

.
o le

50.0% =

Fig. 69: Editor tool with interactive sliders and other selectors. ..

— T
5000

L m—
4000

T | —
3000

| R—
2000

— T
1000

17 http://rubydatasystems.com/matplotlib_charting. html#matplotlib_charting.editor

Page 236, 117

236

Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

seniority_list Documentation, Release 0.68

squeeze | extafiters animate proposal_save

Sz type emp group sqz dir
log v 1 v caqd v
squeeze: 100

< > SQUEEZE

edit range values: 2245 .. 4169

pLvs standalone SPCNT diff values

display attr:

spent v

CALC

PLOT

display

size_alpha

[use extra filters

¥ at_retire_only

[scatter
(¢ poly_fit
[mean

[savgol

month oper

gid_bg hover density

month num

v 0 v

xype

v props ¥

T
2000

v

T
1000

Fig. 70: Same as above, except utilizing the polynomial fit option.

Page 237, 118

118 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

8.2. editor tool

237

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

seniority_list Documentation, Release 0.68

squeeze extrafiters animate proposal_save display size_alpha grid by hover density
S0z type emp group s0z dir chart / edit_fill alpha
log M 1 v wd v display attr White v
. ¥ chart bg/grid
- Jobp grd T edit_ine apha 0 editzone
Gray vy
| | edit_line_width

v

<> SQUEEZE <l Reset) minor grid fines 10

edit range values: 2245 .. 4169

plvs standalone JOBP diff values

-

60 +
el
0P

204 5
'

) Nk S -
Wl)_,":aﬂ.,*~

N S

- B LRSS
’ - onee me
-/ =
20 —— - ———. ",
J - " LY “'--._

t T — T i
1000 1]

Pl R e e it oy
o ?‘@ﬁ 2

—t T ——T T — i T T t T — t T — t T
6000 5000 4000 3000 2000 1000

Fig. 71: Example of a job level comparison for a future month.Fage 238 119

119 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

238 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

seniority_list Documentation, Release 0.68

squeeze extra filters animate proposal_save
sqz type emp group sqz dir
log v 1 v <<d v
squeeze: 100
< >

SQUEEZE

edit range values: 1035 .. 2090

P1YLONG abs values

display size_alpha grid_bg hover density
|| use extra filters
display attr: [at_retire_only
ylong - month oper month num
scatter
= v 65 v
I poly_fit
| e e
N || savgol abs v pops ¥
—

—
5000

T
6000

Fig. 72: Example of actual (not differential) year longevity attribute for a future mont

T N
4000 3000 2000 1000

h Page 239, 120

120 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

8.2. editor tool

239

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

seniority_list Documentation, Release 0.68

squeeze extrafiters animate proposal_save display size alpha grid by hover density

. Val 1
Filter 1 Oper1 W use extra filiers
1999-12-31 . .
Idate LA v display attr: ¥ at_retire_only
month oper month num
it_ord A
Filter 2 Oper2 Val 2 calorer @ scatter
= v 35 v
g voe= vo2 [paly_fit
Filter 3 Oper 3 & mean yiype xtype
Val 3 (7] savgol
v| == v

= abs v props T
CALC

edit range values: 1038 .. 2856

p1 CAT_ORDER abs values, with filter: [Idate <= 1999-12-31,eg >=2]

""""""""""""""" AR BN YAl | B ——
4 "'.“ ey " e emanus saaun sy yodent o dos® |"I“
. v " .
. . w et e

|Hi—

1000 =
b
* o
b
P " .
" e
e
2000—_'.__ . e
l".
O
.",'l' |

.
)
o e
R
N

4000

T T T T T t T T T T t T T T T T T T T T T T T T T d
5000 4000 3000 2000 1000 0

Fig. 73: Abosolute value filtered display, proposal “p1” cat_order (job value) at retirement for
groups 2 and 3 with a longevity date of 1999 or earlier.P2ee 240 121

121 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

240 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

CHAPTER
NINE

CONVERTER MODULE

The converter module contains a function which is used when constructing a data model with an en-
hanced job level hierarchy (vs. basic) which may also contain special or conditional job assignment
requirements.

converter.convert (job_dict=None, sg_list=None, count_ratio_dict=None, ratio_dict=None,
ratio_onoff_dict=None, count_onoff_dict=None, dist_sg=None,
dist_ratio=None, dist_count_ratio=None)

Convert data relating to job assignment conditions from basic job level inputs to enhanced
job level inputs

Inputs are the basic job level values for the various conditions, the job dictionary, and the
distribution methods used during conversion.

This function is called within the build_program_files script when the “enhanced_job” key
value within the settings dictionary is set to “True”.

inputs

job_dict (dictionary)
case_specific jd variable. This input contains full-time job level conversion per-
centages

sg_list (list)
case-specific sg_rights variable

ratio_list (list)
case-specific ratio_cond variable

ratio_dict (dictionary)
dictionary containing ratio condition data

count_ratio_dict (dictionary)
dictionary containing all data related to a capped ratio or count ratio condition

dist_sg, dist_ratio, dist_count (string)
options are: ‘split’, ‘full’, ‘part’

determines how jobs are distributed to the enhanced job levels.

241

seniority_list Documentation, Release 0.68

‘split’ - distribute basic job count to full- and part-time enhanced job levels accord-
ing to the ratios set in the job dictionary (jd) variable

‘full’ - distribute basic job count to corresponding enhanced full-time job levels
only

‘part’ - distribute basic job count to corresponding enhanced part-time job levels
only. This option could be selected if the employees with special job rights are
placed in a relatively low position on the integrated list, eliminating the option of
obtaining a full-time job position

The distribution type for each condition input is independent of the other condition
distributions.

If these variables are not assigned, the program will default to “split”.

242

Chapter 9. converter module

CHAPTER
TEN

EDITOR_FUNCTION MODULE

bokeh_editor.py
EDITOR TOOL
requires bokeh 0.12.13+ - uses bokeh server

class editor_function.Data(data=None)
Bases: object

update_data(d)

class editor_function.Kwargs (kdict=None)
Bases: object

add (key, value)
clear()

remove (key)
update (other_dict)

class editor_function.PropOrder (list_order=None, name=None)
Bases: object

update_name (new_name)
update_order (new_order)

editor_function.alpha_list()
provides a list of string decimals for editor grid_bg tab alpha selectors

editor_function.color_list()

provides a list of string color names for editor grid_bg tab color selectors

243

seniority_list Documentation, Release 0.68

editor_function.editor (doc, poly_dim=15, ema_len=25, savgol_window=35, savgol_fit=1I,

animate_speed=350, plot_width=1100, plot_height=500,
strip_eg_height=>50, start_dot_size=4.75, max_dot_size=25,
start_marker_alpha=0.65, marker_edge_color=None,
marker_edge_width=0.0)

create the editor tool

use the following code to run within the notebook:

from functools import partial
import editor_function as ef

from bokeh.resources import INLINE
from bokeh.io import show, output_notebook

from bokeh.application.handlers import FunctionHandler
from bokeh.application import Application

import os
os.environ['BOKEH_ALLOW_WS_ORIGIN'] = "*'
output_notebook()

handler = FunctionHandler(partial(ef.editor,
optional kwargs,

))
app = ApplicationChandler)
show (app)

inputs

doc (variable)
a variable representing the bokeh document, do not modify

poly_dim (integer)
the order of the polynomial fit line

ema_len (integer)
the smoothing length to use when constructing the exponential moving average line

savgol_window (positive odd integer)
Savitzky-Golay filter window length

savgol_fit (integer)
The order of the polynomial used to fit the samples. This value must be less than

244

Chapter 10. editor_function module

seniority_list Documentation, Release 0.68

the savgol_window value.

animate_speed (integer)
Number of milliseconds between each animated month display

plot_width (integer)

width of main and density charts in pixels
plot_height (integer)

height of main chart in pixels

strip_eg_height (integer)
height alloted for each employee group when constructing the density chart

start_dot_size (float)
initial scatter marker size for main chart

max_dot_size (integer)
maximum scatter marker size for the main chart display, set to size sliders

start_marker_alpha (float)
initial scatter marker alpha (transparency) for main chart display

marker_edge_color (color value string or None)
color of scatter marker edge color for main chart when marker edge width value is

greater than zero

marker_edge_width (float)
width of scatter marker edge width when marker_edge_color is not None

editor_function.line_widths()
provides a list of string decimals for editor grid_bg tab edit line width selector

editor_function.make_dataset (proposal_name=", df order=None, conditions=[],
ds=None, ds_stand=None)

editor_function.use_first_proposal_found(proposal_name)
find and return the first list order found in ‘dill/proposal_names.pkl’. This function is used
when another proposal name is designated by another section of the program but does not
exist.

inputs

proposal_name (string)
the name of the proposal which was not found

245

seniority_list Documentation, Release 0.68

246 Chapter 10. editor_function module

CHAPTER
ELEVEN

FUNCTIONS MODULE

The functions module contains core program routines related to building and working with the data
model and associated files. General definitions: dataset “month_form” is length n months in model
“short_form” data has a length equal to the number of employees “long_form” data is the length of
the cumulative sum non-retired employees for all months in the data model (could be millions of
rows, depending on workgroup size and age)

functions.add_zero_col (arr)
Add a column of zeros as the first column in a 2d array. Output will be a numpy array.

example:

input array:

array([[®, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[1e, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 491D

output array:

array([[®, ©, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 16, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[0, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[0O,

40, 41, 42, 43, 44, 45, 46, 47, 48, 49]11)

inputs
arr (array)

2-dimensional numpy array

functions.age_correction(month_nums_array, ages_array, retage)

Long_Form

247

seniority_list Documentation, Release 0.68

Returns a long_form (all months) array of employee ages by incrementing starting ages ac-
cording to month number.

Note: Retirement age increases are handled by the build_program_files script by increment-
ing retirement dates and by the clip_ret_ages function within the make_skeleton script.

inputs

month_nums_array (array)
gen_month_skeleton function output (ndarray)

ages_array (array)
starting_age function output aligned with long_form (ndarray) i.e. s_age is starting
age (aligned to empkeys) repeated each month.

retage (integer or float)
output clip upper limit for retirement age

Output is s_age incremented by a decimal month value according to month_num (this is
candidate for np.put refactored function)

functions.align_£ill_down(l, u, long_indexed_df, long_array)

Data align current values to all future months (short array segment aligned to long array)
This function is used to set the values from the last standalone month as the initial data for
integrated dataset computation when a delayed implementation exists.

uses pandas df auto align - relatively slow TODO (for developer) - consider an all numpy
solution

inputs

I, u (integers)
current month slice indexes (from long df)

long_indexed_df (dataframe)
empty long dataframe with empkey indexes

long_array (array)
long array of multiple month data (orig_job, fur_codes, etc)

declare long indexed df outside of function (input). grab current month slice for array inser-
tion (copy). chop long df to begin with current month (copy). assign array to short df. data
align short df to long df (chopped to current month and future). copy chopped df column as
array to long_array return long_array

functions.align_next (this_index_arr, next_index_arr, these_vals_arr)

“Carry forward” data from one month to the next. Compare indexes (empkeys) from one
month to the next month. When matching index is found, assign corresponding index value
to new result array. Effectively finds the remaining employees (not retired) in the next month
and copies the target column data values for them from current month data into the next
months data.

248 Chapter 11. functions module

seniority_list Documentation, Release 0.68

inputs

this_index_arr (array)
current month index of unique employee keys

next_index_arr (array)
next month index of unique employee keys (a subset of this_index_arr)

these_vals_arr (array)
the data column segment (attribute) to carry forward

functions.anon_dates (df, date_col_list, max_adj=5, positive_only=True, inplace=False)

Add (or optionally, add or subtract) a random number of days to each element of a date
attribute column.

inputs

df (dataframe)
short-form (master list) pandas dataframe containing a date attribute column

date_col_list (list)
name(s) of date attribute column(s) to be adjusted (as a list of strings)

Example:

['ldate', 'doh', 'dob']

max_adj (integer)
the maximum number of days to add (or optionally subtract) from each element
within the date column

positive_only (boolean)
if True limit the range of adjustment days from zero to the max_adj value. If False,
limit the range of adjustment from negative max_adj value to positive max_adj
value.

inplace (boolean)
if True, insert the results directly into the date column(s) of the input dataframe.
Caution: make a copy first!
functions.anon_empkeys (df, seq_start=10001, frame_num=10000000, inplace=False)
Produce a list of unique, randomized employee numbers, catogorized by employee group
number code. Output may be used to anonymize a dataset empkey column.

Dataframe input (df) must contain an employee group (eg) column.

inputs
df (dataframe)
short-form (master list) pandas dataframe containing an employee group code col-
umn

249

seniority_list Documentation, Release 0.68

seq_start (integer)
this number will be added to each employee group cumulative count to “seed”
the random employee numbers. These numbers will be shuffled within employee
groups by the function for the output

frame_num (integer)
This number will be multiplied by each employee code and added to the employee
group cumulative counts (added to the seq_start number), and should be much
larger than the data model population to provide a constant length employee number
(empkey) for all employees.

inplace (boolean)
if True, insert the results directly into the “empkey” column of the input dataframe.
Caution: make a copy first!

functions.anon_master (case, empkey=True, name=True, date=False, sample=False,
seq_start=10001, frame_num=10000000, min_seg=3, max_seg=3,
add_rev=False, date_col_list=["ldate’, 'doh'], max_adj=>5,
positive_only=True, date_col_list_sec=['dob'], max_adj_sec=3,
positive_only_sec=True, n=None, frac=None, reset_index=False)

Specialized function to anonymize selected columns from a master.xIsx file and/or select
a subset. All operations are inplace. The original master file is copied and saved as mas-
ter_orig.xIsx.

The default parameters will replace last names and employee keys with substitute values.
Date columns, (doh, ldate, dob) will also be adjusted if the date input is set True and the
proper column names are set as column list inputs.

The function reads the original excel file, copies and saves it, modifies the original file as
directed, and writes the results back to the original file. Subsequent dataset creation runs will
use the modified data. The output master list will be sorted according to the original master
list order.

inputs

case (string)
the case study name

empkey (boolean)
if True, anonymize the empkey column

name (boolean)
if True, anonymize the Iname column

date (boolean)
if True, anonymize date columns as disignated with the date_col_list and the
date_col_list_sec inputs

sample (boolean)
if True, sample the dataframe if the n or frac inputs is/are not None

250 Chapter 11. functions module

seniority_list Documentation, Release 0.68

seq_start (integer)
beginning anonymous employee number portion of empkey

frame_num (integer)
large frame number which will contain all generated employee numbers. This num-
ber will be adjusted to begin with the appropriate employee group code

min_seg (integer)
minimum number of 2-character segments to include in the generated substitute
last names.

max_seg (integer)
maximum number of 2-character segments to include in the generated substitute
last names.

add_rev (boolean)
if True, add reversed, non-duplicated 2-character segments to the pool of strings
for name construction. This is normally not necessary and will construct output
strings with multiple consecutive consonants/vowels.

date_col_list (list)
list of date value columns to adjust. All columns in this list will be adjusted in a
syncronized fashion, meaning a random day adjustment for each row will be applied
to each row member of all columns.

max_adj (integer)
maximum random adjustment deviation, in days, from the original date(s)

positive_only (boolean)
if True, only adjust dates forward in time

date_col_list_sec (list)
a secondary list of date column(s) which will be adjusted independently from the
date columns in the date_col_list

max_adj_sec (integer)
maximum random adjustment deviation, in days, from the original date(s) in the
date_col_list_sec columns

positive_only_sec (boolean)
if True, only adjust dates forward in time (for secondary cols)

n (integer or None)
number of rows to sample if the sample input is True. This input will override the
frac input

frac (float (0.0 - 1.0) or None)
decimal fraction (0.0 to 1.0) of the master list to sample, if the sample input is True
and the n input is None

251

seniority_list Documentation, Release 0.68

reset_index (boolean)
if True, reset the index of the output master list (zero-based integer index). Do not
use this option normally because it will wipe out the empkey index of the master
list.

functions.anon_names (length=10, min_seg=3, max_seg=3, add_rev=False, df=None,
inplace=False)

Generate a list of random strings
Output may be used to anonymize a dataset name column

The length of the output strings will be determined by the min_seg and max_seg inputs. The
segments (seg) are random 2-letter combinations of a consonant and a vowel. An additional
random consonant or vowel will be added to the segment combinations, so the length of the
output strings will always be an odd number. The min and max may be the same value to
produce a list of strings of uniform length.

Example:

If the min_seg input is 1 and the max_seg input is 3, the output list will contain strings from
3 (2-letter seg + 1 random letter) to 7 characters.

inputs

length (integer)
the length of the output list

min_seg (integer)
the minimum number of 2 letter segments to include in the output list

max_seg (integer)
the maximum number of 2 letter segments to include in the output list (must be =>
“min_seg” input)

add_rev (boolean)
add vowel-consonant combinations to the consonant-vowel segments. (this is not
normally needed to produce random and readable strings)

df (dataframe)
optional short-form pandas dataframe input. If not None, use the length of the
dataframe as the “length” input value

inplace (boolean)
if the “df” input is not None, insert the results directly into the input “Iname” col-
umn. Caution: make a copy first!
functions.anon_pay (df, proportional=True, mult=1.0, inplace=False)
Substitute pay table baseline rate information a proportional method or with a non-linear,
non-proportional method.

inputs

252 Chapter 11. functions module

seniority_list Documentation, Release 0.68

df (dataframe)
pandas dataframe containing pay rate date (dataframe representation of the “rates”
worksheet from the pay_tables.xIsx workbook)

proportional (boolean)
if True, use the mult input to increase or decrease all of the “rates” worksheet pay
data proportionally. If False, use a fixed algorithm to disproportionally adjust the
pay rates.

mult (integer or float)
if the proportional input is True, multiply all pay rate values by this input value

inplace (boolean)
if True, replace the values within the original dataframe with the “anonomized”
values.
functions.anon_pay_table(case, proportional=True, mult=1.0)

Anonymize the “rates” worksheet of the “pay_tables.xlsx” input file. The rates may be pro-

portionally adjusted (larger or smaller) or disproportionally adjusted with a fixed algorithm.

A copy of the original excel file is copied and saved as “pay_tables_orig.xlsx”.

All modifications are inplace.

inputs

case (string)
the case name

proportional (boolean)
if True, use the mult input to increase or decrease all of the “rates” worksheet pay
data proportionally. If False, use a fixed algorithm to disproportionally adjust the
pay rates.

mult (integer or float)
if the proportional input is True, multiply all pay rate values by this input value

functions.assign_cond_ratio(job, this_job_count, ratio_dict, orig_range, assign_range,
eg_range, fur_range, cap=None)

Apply a job ratio assignment condition
The main job assignment function calls this function at the appropriate months.

This function applies a ratio for job assignment between ratio groups. Each ratio group may
contain one or more employee groups. The number of jobs affected may be limited with the
“cap” input.

The ratio for job assignment is set with the inputs on the “ratio_cond” worksheet of the sez-
tings.xlsx input spreadsheet, using the “group” columns and the corresponding “weights”
columns.

253

seniority_list Documentation, Release 0.68

Optionally, the ratio of jobs which exists during the “month_start” spreadsheet input may
be captured and used for job assignment during the data model months when the ratio job
assignment condition is applicable (“month_start” through “month_end”). The existing ratios
are captured and used by setting the “snapshot” input cell to True for the appropriate basic
job row. When using the snapshot option, any weightings designated within the “weights”
columns will be ignored.

There may be a mix of snapshot ratios and ratios set by the “weight” columns for use within
the program. There may also be count-capped ratio assignments and straight ratio assign-
ments within the same data model as long as the effective months and jobs do not overlap,
but there may only be one row of ratio data for a job level within the same input worksheet.

No bump, no flush rules apply when assigning jobs by ratio, meaning only job openings due
to retirements, increases in job counts, or other openings will be assigned according to the
ratio schedule. Employees previously holding a job affected by the ratio condition will not
be displaced to allow an employee from a different ratio group to have that job when the
ratio assignment period begins. Therefore, it may take some time for the desired ratio of job
assignments to be achieved if it differs significantly from the actual ratio(s) when the time
period of conditional job assignment begins.

inputs

job (integer or float)
job level number

this_job_count (integer or float)
number of jobs available

ratio_dict (dictionary)
ratio condition dictionary, constructed with the build_program_files script and pos-
sibly modified by the set_snapshot_weights function if the “snapshot” option is set
to True on the “ratio_cond” worksheet of the “settings.xlsx” input spreadsheet.

orig_range (1d array)
original job range Month slice of the orig_job column array (normally pertaining
a specific month).

assign_range (1d array)
job assignment range Month slice of the assign_range column array

eg range (1d array)
employee group range Month slice of the eg_range column array

fur_range (1d array)
furlough range Month slice of the fur_range column array

cap (integer (or whole float))
if a count ratio job assignment is being used, this number represents the number of
jobs affected by the conditional assignment. Available jobs above this amount are
not affected.

254

Chapter 11. functions module

seniority_list Documentation, Release 0.68

functions.assign_job_counts (job_count_range, assign_range, job, this_job_count)

assign job counts to job count array month slice
inputs

job_count_range (array)
month slice of long job count array

assign_range (array)
month slice of long job assignment array

job (integer)
job level number

this_job_count (integer)
job count alloted for job level

functions.assign_jobs_full_flush_job_changes (nonret_counts, job_counts,
num_job_levels)

(Long_Form)
Using the nonret counts for each month:
a. determine the long form slice for assignment, and
b. slice the jobs list from the top to create job assignment column
c. create a corresponding furlough column
d. create a job count column

Uses the job_counts (job_gain_loss_table function)[0] to build stovepiped job lists allowing
for job count changes each month and a furlough status column.

Unassigned employees (not enough jobs), are left at job number zero This is the full bump
and full flush version
inputs
nonret_counts (numpy array)

array containing the number of non-retired employees for each month

job_counts (numpy array)
array containing the monthly counts of jobs for each job level

num_job_levels (integer)
the number of job levels in the model (excluding furlough level)

functions.assign_jobs_nbnf_job_changes(df, lower, upper, total_months,
Jjob_reduction_months, start_month,
condition_list, sdict, tdict, fur_return=False)

(Long_Form)

255

seniority_list Documentation, Release 0.68

Uses the job_gain_or_loss_table job count array for job assignments. Jobs counts may change
up or down in any category for any time period. Handles furlough and return of employees,
prior rights/conditions and restrictions and recall of initially furloughed employees.

Inputs are precalculated outside of function to the extent possible. Returns tuple
(long_assign_column, long_count_column, orig jobs, fur_data)

inputs

df (dataframe)
long-form dataframe with [‘eg’, ‘sg’, ‘fur’, ‘orig_job’] columns.

lower (array)
ndarry from make_lower_slice_limits function (calculation derived from cumsum
of count_per_month function)

upper (array)
cumsum of count_per_month function

total_months (integer or float)
sum of count_per_month function output

job_reduction_months (list)
months in which the number of jobs is decreased from the
get_job_reduction_months function

start_month (integer)
integer representing the month number to begin calculations, likely month of inte-
gration when there exists a delayed integration (from settings dictionary)

condition_list (list)
list of special job assignment conditions to apply, example: [‘prex’, ‘count’, ‘ratio’]

sdict (dictionary)
the program settings dictionary (produced by the build_program_files script)

tdict (dictionary)
job tables dictionary (produced by the build_program_files script)

fur_return (boolean)
model employee recall from furlough if True using recall schedule from settings
dictionary (allows call to mark_for_recall function)

Assigns jobs so that original standalone jobs are assigned each month (if available) unless a
better job is available through attrition of employees.

Each month loop starts with the lowest job number.
For each month and for each job level:

1. assigns nbnf (orig) job if job array (long_assign_column) element is zero (unas-
signed) and orig job number is less than or equal to the job level in current loop,
then

256 Chapter 11. functions module

seniority_list Documentation, Release 0.68

2. assigns job level in current loop to unassigned slots from top to bottom in the job
array (up to the count of that job level remaining after step one above)

Each month range is determined by slicing using the lower and upper inputs. A comparison
is made each month between the original job numbers and the current job loop number.

Job assignments are placed into the monthly segment (assign_range) of the
long_assign_column.

The long_assign_column eventually becomes the job number (jnum) column in the dataset.

Original job numbers of 0 indicate no original job and are treated as furloughed employees.
No jobs are assigned to furloughees unless furlough_return option is selected.

functions.assign_standalone_job_changes(eg, df_align, lower, upper, total_months,
Jjob_counts_each_month,
total_monthly_job_count,
nonret_each_month, job_change_months,
Jjob_reduction_months, start_month, sdict,
tdict, apply_sg_cond=True)
(Long_Form)

Uses the job_gain_or_loss_table job count array for job assignments. Jobs counts may change
up or down in any category for any time period. Handles furlough and return of employees,
prior rights/conditions and restrictions and recall of initially furloughed employees.

Inputs are precalculated outside of function to the extent possible. Returns tuple
(long_assign_column, long_count_column, held_jobs, fur_data, orig_jobs)

inputs

eg (integer)
input from an incremental loop which is used to select the proper employee group
recall scedule

df_align (dataframe)
dataframe with [‘sg’, ‘fur’] columns

num_of_job_levels (integer)
number of job levels in the data model (excluding a furlough level)

lower (1d array)

ndarry from make_lower_slice_limits function (calculation derived from cumsum
of count_per_month function)

upper (1d array)
cumsum of count_per_month function

total_months (integer or float)
sum of count_per_month function output

257

seniority_list Documentation, Release 0.68

job_counts_each_month (array)
output of job_gain_loss_table function[0] (precalculated monthly count of jobs in
each job category, size (months,jobs))

total_monthly_job_count (array)
output of job_gain_loss_table function[1] (precalculated monthly total count of all
job categories, size (months))

nonret_each_month (1d array)
output of count_per_month function

job_change_months (list)
the min start month and max ending month found within the array of
job_counts_each_month inputs (find the range of months to apply consideration
for any job changes - prevents unnecessary looping)

job_reduction_months (list)
months in which the number of jobs is decreased (list). from the
get_job_reduction_months function

start_month (integer)
starting month for calculations, likely implementation month from settings dictio-
nary

sdict (dictionary)
the program settings dictionary (produced by the build_program_files script)

tdict (dictionary)
job tables dictionary (produced by the build_program_files script)

apply_sg_cond (boolean)
compute with pre-existing special job quotas for certain employees marked with a
one in the sg column (special group) according to a schedule defined in the settings
dictionary

Assigns jobs so that original standalone jobs are assigned each month (if available) unless a
better job is available through attrition of employees.

Each month loop starts with the lowest job number.

For each month and for each job level:
1. assigns nbnf (orig) job if job array (long_assign_column) element is zero (unas-
signed) and orig job number is less than or equal to the job level in current loop, then 2.
assigns job level in current loop to unassigned slots from top to bottom in the job array
(up to the count of that job level remaining after step one above)

Each month range is determined by slicing using the lower and upper inputs.

A comparison is made each month between the original job numbers and the current job loop
number.

258 Chapter 11. functions module

seniority_list Documentation, Release 0.68

Job assignments are placed into the monthly segment (assign_range) of the
long_assign_column.

The long_assign_column eventually becomes the job number (jnum) column in the dataset.

Original job numbers of 0 indicate no original job and are treated as furloughed employees -

no jobs are assigned to furloughees unless furlough_return option is selected.
functions.career_months (rer_input, start_date)

(Short_Form)

Determine how many months each employee will work including retirement partial month

“ret_input” (retirement dates) may be in the form of a pandas dataframe, pandas series, array,
list, or string

Output is a numpy array of integers containing the number of months between the start_date
and each date in the ret_input (months from start date to retirement for each employee)

inputs

ret_input (dataframe, series, array, list, or string)
retirement dates input

start_date (string date)
comparative date for the retirement dates input, normally the data model starting
date
functions.clear_dill_files()
remove all files from ‘dill’ folder. used when changing case study, avoids possibility of file
from previos calculations being used by new study
functions.clip_ret_ages(rer_age_dict, init_ret_age, dates_long_arr, ages_long_arr)
Clip employee ages in employee final month to proper retirement age if the model includes
an increasing retirement age over time

inputs

ret_age_dict (dictionary)
dictionary of retirement increase date to new retirement age as defined in settings
dictionary

init_ret_age
initial retirement age prior to any increase

dates_long_arr (numpy array)
array of month dates (long form, same value during each month)

ages_long_arr (numpy array)
array of employee ages (long form)

259

seniority_list Documentation, Release 0.68

functions.contract_year_and_raise(df, settings_dict)
(Month_Form)

Generate the contract pay year for indexing into the pay table. Pay year is clipped to last year
of contract.

Also create an annual assumed raise column applicable to the time period beyond the contract
duration. This is a multiplier column with a compounded value each subsequent year. If no
raise is elected (via the settings.xlsx input file, “scalars” worksheet), then this column will
be all ones. The annual raise percentage is designated on the same worksheet. The input df
must be a single column dataframe containing end-of-month dates, one for each month of the
data model.

NOTE: (this function can accept any number of pay exception periods through the
pay_exceptions dictionary, populated by the “pay_exceptions” worksheet values within the
settings.xlsx input file, see the program documentation for more information)

inputs

df (dataframe)
a single column dataframe containing end-of-month dates, one for each month of
the data model

settings_dict (dictionary)
dictionary of program settings generated by the build_program_files script

functions.convert_to_datetime (date_data, attribute)

Convert a dataframe column, series, list, or string input into an array of datetimes
inputs

data_data (dataframe, series, array, list, or string)
pandas dataframe with a date column containing string dates or datetime objects,
pandas series of dates (strings or datetime objects), a list/array of date strings or
datetime objects, or a single comma-separated string containing date information.

attribute (string)
if the date_data type is a dataframe, the name of the column containing the date
information. Otherwise, this input is ignored.

functions.convert_to_enhanced(eg_job_counts, j_changes, job_dict)

Convert employee basic job counts to enhanced job counts (includes full-time and part-time
job level counts) and convert basic job change schedules to enhanced job change schedules.
Returns tuple (enhanced_job_counts, enhanced_job_changes)

inputs

eg_job_counts
A list of lists of the basic level job counts for each employee group. Each nested
list has a length equal to the number of basic job levels.

260 Chapter 11. functions module

seniority_list Documentation, Release 0.68

example:

[[197, 470, 1056, 412, 628, 1121, 0, 0],

[80, 85, 443, 163, 96, 464, 54, 66],

[0, 26, 319, 0, 37, 304, 0, 0]]
j_changes

input from the settings dictionary describing change of job quantity over months

of time (list)

example:

[1, [35, 641, 87,

[80, 7, 0]]

[[job level, [start and end month], total job count change, [eg allotment of change

for standalone calculations]]

job_dict

conversion dictionary for an enhanced model. This is the “jd” key value from the
settings dictionary. It uses the basic job levels as the keys, and lists as values which
containin the new full- and part-time job level numbers and the percentage of basic
job counts to be converted to full-time jobs.

example:

{1: [1, 2, 0.6],
2: [3, 5, 0.625],
3: [4, 6, 0.65],
4: [7, 8, 0.6],

5: [9, 12, 0.625],
6: [10, 13, 0.65],
7: [11, 14, 0.65],
8: [15, 16, 0.65]}

functions.convert_to_hex(rgha_input)

convert float rgba color values to string hex color values rgba = color values expressed as:

red, green, blue, and (optionally) alpha float values rgba_input may be:

1. asingle rgba list or tuple

2. alist or tuple containing rgba lists or rgba tuples

3. adictionary of key: rgba values

output is string hex color values in place of rgba values

Examples:

input single rgba value:

261

seniority_list Documentation, Release 0.68

sample_value = (.5, .3, .2)
convert_to_hex(sample_value)

'"#7f4c33"

input list:

sample_list = [[0.65, 0.81, 0.89, 1.0],
[0.31, 0.59, 0.77, 1.0],
[0.19, 0.39, 0.70, 1.0],
[0.66, 0.85, 0.55, 1.0]]

convert_to_hex(sample_list)
["#a5cee2', '"#4f96c4', '#3063b2', '#a8d88c']

input dict:

sample_dict = {1: (.65, .45, .45, 1.),
2: [.60, .45, .45, 1.],
3: (.55, .45, .45, 1.)}

convert_to_hex(sample_dict)
{1: "#a57272"', 2: '#99593a', 3: '#8c7249'}

inputs

rgba_input (tuple, list, or dictionary)
input may be a single list or tuple OR a list of float rgba values as lists or tuples
OR a dictionary with values as lists or tuples. Valid string hex values may also be
passed as inputs and will be returned unchanged.

functions.copy_excel_file(case, file, return_path_and_df=False, revert=False,
verbose=True)

Copy an excel file and add °_orig’ to the file name, or restore an excel file from the ‘_orig’
copy.
inputs
case (string)

the data model case name

file (string)
the excel file name without the .xIsx extension

return_path_and_df (boolean)
if True, return a tuple containing the file path as a string and the worksheet desig-
nated by the “file” input as a dataframe within a dictionary

262 Chapter 11. functions module

seniority_list Documentation, Release 0.68

revert (boolean)
if False, copy the excel file and add °_orig’ to the file name. if True, restore the
copied file and drop the ‘_orig’ suffix

verbose (boolean)
if True, print a brief summary of the operation result

functions.count_avail_jobs (assign_range, job, this_job_count)
use numba to loop through the job assignment range and count the number of jobs in a spec-
ified job level previously assigned from the previous month, then subtract result from the
total job level positions count. This result identifies the number of openings available for the
current month.

inputs

assign_range (array)
monthly slice of job assignment array

job (integer)
job level being tested

this_job_count (integer)
total job positions count for the job being tested

functions.count_per_month(career_months_array)
Month_Form

Returns number of employees remaining for each month (not retired). Cumulative sum of
career_months_array input (np array) that are greater or equal to each incremental loop month
number.

Note: alternate method to this function is value count of mnums: df actives_each_month =
pd.DataFrame(df_idx.mnum.value_counts()) df_actives_each_month.columns = [‘count’]

input

career_months_array
output of career_months function. This input is an array containing the number of
months each employee will work until retirement.

functions.create_snum_and_spcnt_arrays (jnums, job_level count,
monthly_population_counts,
monthly_job_counts, Ispcnt_remaining_only)

Calculates: long_form seniority number (‘snum’, only active employees), seniority percent-
age (‘spcnt’, only active employees), list number (‘lnum’, includes furlougees), list percentage
(‘Ispent’, includes furloughees).

Iterate through monthly jobs count data, capturing monthly_job_counts to be used as the
denominator for percentage calculations.

263

seniority_list Documentation, Release 0.68

This function produces four ndarrays which will make up four columns in the long_form
pandas dataset.

Returns tuple (long_snum_array, long_spcnt_array, long_list_array, long_lspcnt_array)
inputs

Jjnums
the long_form jnums result

job_level_count
number of job levels in model

monthly_population_counts
count_per_month function output

monthly_job_counts

total of all jobs each month derived from job_gain_loss_table function (table) >>>
np.add.reduce(table, axis=1)

Ispent_remaining_only
calculate list percentage based on employees remaining in each month including

furloughees, otherwise percentage calculation denominator is the greater of em-
ployees remaining (incl fur) or jobs available

functions.cross_val (coll, value, col2)
functions.distribute (available, weights, cap=None)
proportionally distribute ‘available’ according to ‘weights’

usage example:

distribute(334, [2.48, 1]1)

returns distribution as a list, rounded as integers:

[238, 96]

inputs

available (integer)
the count (number) to divide

weights (list)
relative weighting to be applied to available count for each section. numbers may

be of any size, integers or floats. the number of resultant sections is the same as the
number of weights in the list.

cap (integer)
limit distribution total to this amount, if less than the “available” input.

264 Chapter 11. functions module

seniority_list Documentation, Release 0.68

functions.eg_quotas (quota, actual, cap=None, this_job_count=None)

determine the job counts to be assigned to each ratio group during a ratio condition job as-
signment routine

inputs

quota (list or list-like)
the desired job counts for each employee group

actual (list or list-like)
the actual job counts for each employee group

cap (integer (or whole float))
if a count ratio routine is being used, this is the total count of jobs to be affected by
the ratio

this_job_count (integer (or whole float))
the monthly count of the applicable job

functions. find_index_val (dfl, df2, df2_vals, coll=None, col2=None)

find a value in another dataframe with the same index of another given value in a dataframe.
df1 index, df2 index, and the value columns must contain unique values.
inputs

df1 (dataframe)
the first dataframe containing values to index match in another dataframe

df2 (dataframe)
the second dataframe with corresponding index values

df2_vals (list)
values to match

functions.find_nearest (col_arr, value)

functions.gen_month_skeleton(month_count_array)
Long_Form

Create an array of month numbers with each month number repeating n times for n non-
retired employees in each month. i.e. the first month section of the array will be all zeros
(month: 0) repeating for the number of non-retired employees. The next section of the array
will be all ones (month: 1) repeating for the number of employees remaining in month 1.
Output is a 1d ndarray.

This funtion creates the first column and the basic form of the skeleton dataframe which is
the basis for the dataset dataframes.

inputs

265

seniority_list Documentation, Release 0.68

month_count_array
a numpy array containing the number of employees remaining or not retired for
each month. This input is the result of the count_per_month function.

functions.gen_skel_emp_idx (monthly_count_array, career_mths_array,
empkey_source_array)

Long_Form
For each employee who remains for each month, grab that employee index number.

This index will be the key to merging in other data using data alignment. Input is the result
of the count_per_month function (np.array) and the result of the career_months function

inputs

monthly_count_array (numpy array)
count of non-retired active employees for each month in the model, the ouput from
the count_per_month function.

career_mths_array (numpy array)
career length in months for each employee, output of career_months functions.

empkey_source_array (numpy array)
empkey column data as array

Returns tuple (skel_idx_array, skel_empkey_array)

functions.get_indexes(in_arr)

functions.get_job_change_months (job_changes)
extract a sorted list of only the unique months containing a change in any job count as defined
within the settings dictionary job change schedules

input

job_changes
list of job change schedule lists, normally equal to the j_changes variable from the
settings dictionary

functions.get_job_reduction_months (job_changes)
extract a sorted list of only the unique months containing a reduction in any job count as
defined within the settings dictionary job change schedules
input

job_changes
list of job change schedule lists, normally equal to the j_changes variable from the
settings dictionary

functions.get_month_slice(df, [, h)

Convenience function to extract data for a particular month. Input is low and high indexes of
target month data (within dataset containing many months)

266 Chapter 11. functions module

seniority_list Documentation, Release 0.68

The input may also be an array (not limited to a dataframe).

inputs
df
dataframe (or array) to be sliced
1
lower index of slice
h

upper index of slice

functions.get_recall_months (list_of recall_schedules)
extract a sorted list of only the unique months containing a recall as defined within the settings
dictionary recall schedules.

input

list_of recall schedules
list of recall schedule lists, normally equal to the recalls variable from the settings
dictionary
functions.hex_dict()

returns a color name to hex code dictionary (no inputs)

functions.index_duplicates(df)
return a pandas dataframe containing all rows which share the same index value. If the
dataframe has no duplicated indexes, and empty dataframe is returned.
inputs
df (dataframe with at least one column)
functions.index_dups_exist(df)
determine if any index values are duplicated within a dataframe and return True or False
inputs
df (dataframe with at least one column)
functions. job_gain_loss_table (months, job_levels, init_job_counts, job_changes,
standalone=False)
Make two arrays of job tally information.
The first array has a row for each month in the model, and a column for each job level (ex-
cluding furlough). This array provides a count for each job for each month of the model
accounting for changes provided by the job change schedules defined by the settings dictio-

nary. The second array is a one-dimensional array containing the sum for all jobs for each
month of the model.

inputs

267

seniority_list Documentation, Release 0.68

months (integer)
number of months in model

job_levels (integer)
number of job levels in model (excluding furlough level)

init_job_counts (tuple of two numpy arrays)
initial job counts. Output from the make_jcnts function, essentially an array of the
job count lists for each employee group and an array of the combined counts.

job_changes (list)
The list of job changes from the settings dictionary.

standalone (boolean)
if True, use the job count lists for the separate employee groups, otherwise use the
combined job count

Returns tuple (job_table, monthly_job_totals)

functions.load_datasets (other_datasets=['standalone’, 'skeleton’, 'edit’, "hybrid'])

Create a dictionary of proposal names to corresponding datasets. The datasets are generated
with the RUN_SCRIPTS notebook. This routine reads the names of the case study proposals
from a pickled dataframe (‘dill/proposal_names.pkl’), created by the build_program_files.py
script. It then looks for the matching stored datasets within the dill folder. The datasets are
loaded into a dictionary, using the proposal names as keys.

The dictionary allows easy reference to datasets from the Jupyter notebook and from within
functions.

input

other_datasets (list)
list of datasets to load in addition to those computed from the proposals (from the
case-specific proposals.xlsx Excel file)

functions.longevity_at_startdate(ldate_input, start_date, return_as_months=False)
(Short_Form)

determine how much longevity (years) each employee has accrued as of the start date
float output is longevity in years (+1 added to reflect current 1-based pay year)
inputs

ldate_input (dataframe, series, list, or string)
list of longevity dates in datetime format

start_date (string date)
comparative date for longevity dates, normally the data model starting date

return_as_months (boolean)
option to return result as month value instead of year value

268 Chapter 11. functions module

seniority_list Documentation, Release 0.68

functions.make_cat_order (ds, table)

make a long-form “cat_order” (global job ranking) column This function assigns a global
job position value to each employee, considering the modeled job level hierarchy and the job
count within each level. For example, if a case study contains 3 job levels with 100 jobs
in each level, an employee holding a job in the middle of job level 2 would be assigned a
cat_order value of 150.

Category order for standalone employee groups is “normalized” to an integrated scale by
applying standalone job level percentage (relative position within a job level) to the integrated
job level counts. This process allows “apples to apples” comparison between standalone and
integrated job progression.

Standalone cat_order will only reflect job levels available within the standalone scenario.
If the integrated model contains job levels which do not exist within a standalone employee
group model, standalone cat_order results will exclude the respective job level rank segments
and will rank the existing standalone data according to the integrated ranking scale.

The routine creates numpy array lookup tables from integrated job level count data for each
month of the model. The tables are the source for count and additive information which is
used to calculate a rank number within job level and cumulative job count additives.

Month number and job number arrays (from the input ds (dataset)) are used to index into the
numpy lookup arrays, producing the count and additive arrays.

A simple formula is then applied to the percentage, count, and additive arrays to produce the
cat_order array.

inputs

ds (dataframe)
a dataset containing [‘jobp’, ‘mnum’, ‘jnum’] columns

table (numpy array)
the first output from the job_gain_loss_table function which is a numpy array with
total job counts for each job level for each month of the data model
functions.make_decile_bands (num_bands=40, num_returned_bands=10)

creates an array of lower and upper percentile values surrounding a consistent schedule of
percentile markers. If the user desires to sample data at every 10th percentile, this function
provides selectiable bottom and top percentile limits surrounding each 10th percentile, or
variable width sample ranges.

num_bands input must be multiple of 5 greater than or equal to 10 and less than 10000.

num_returned_bands input must be multiple of 5, equal to or less than the num_bands input,
and num_bands/num_returned_bands must have no remainder.

Used for selecting sample employees surrounding deciles (0, 10, 20 etc. percent levels).

Top and bottom bands will be half of normal size.

269

seniority_list Documentation, Release 0.68

inputs

num_bands
Width of bands in percentage is determined by num_bands input. Input of 40 would
mean bands 2.5% wide. (100/40) Top and bottom bands would be 1.25% wide. Ex.
0-1.25%, 8.75-11.25%, ... 98.75-100%

num_returned_bands
number of returned delineated sections. Must be a multiple of 5 less than or equal
to the num_bands value with no remainder when divided into the num_bands value.
(note: an input of 10 would result in 11 actual segments, one-half band at the top
and bottom of list (0% and 100%), and 9 full bands surrounding each decile, 10%
to 90%)

functions.make_delayed_job_counts (imp_month, delayed_jnums, lower, upper)
Make an array of job counts to be inserted into the long_form job counts array of the job
assignment function. The main assignment function calls this function prior to the imple-
mentation month. The array output of this function is inserted into what will become the job
count column. These jobs are from the standalone job results. The job count column displays
a total monthly count of the job in the corresponding jnum (job number) column.

inputs
imp_month (integer)
implementation month, defined by settings dictionary

delayed_jnums (numpy array)
array of job numbers, normally data from the start of the model through the imple-
mentation month

lower (numpy array)
array of indexes marking the beginning of data for each month within a larger array
of stacked, multi-month data

upper (numpy array)
array of indexes marking the end of data for each month

functions.make_dict_from_columns (df, key_col, value_col)

Make a dictionary from two dataframe columns. One column will be the keys and the other
the values.

Unique key column values will be assigned dictionary values. If the key_col input contains
duplicates, only the last duplicate key-value pair will exist within the returned dictionary.

inputs

df (dataframe)
pandas dataframe containing the columns

key_col (string (or possibly integer))
dataframe column which will become dictionary keys

270 Chapter 11. functions module

seniority_list Documentation, Release 0.68

value_col (string (or possibly integer))
dataframe column which will become dictionary values

functions.make_eg_pcnt_column(df, recalc_each_month=False, mnum=0, inplace=True,
trim_ones=True, fixed_col_name='eg_start_pcnt',
running_col_name='eg_pcnt")

make an array derived from the input df reflecting one of the following options:

Option A:
The percentage of each employee within his/her original employee group for a selected
month. The array values will be data-aligned with the df input index. This option is
useful for tracking percentile cohorts throughout the model.

Option B:
The percentage of each employee within his/her original employee group recalculated
each month. This has the effect of adjusting each group relative percentage for pop-
ulation changes due to retirements, furlough, etc. This option is useful for monthly
percentile cohort comparisons.

This function either adds a column to the input dataframe or returns an array of values, the
same length as the input dataframe.

Note: This function calculations include any furloughed employees assign to long-form
dataframe (with default month O values aligned):

make_eg_pcnt_column(df)

inputs

df (dataframe)
pandas dataframe containing an employee group code column (‘eg’) and a month
number column (‘mnum’). The dataframe must be indexed with employee number
code integers (‘empkey’)

recalc_each_month (boolean)

if True:
recalculate separate employee group percentage each month of data model

if False:
calculate values for one month only - align those values by employee number
(empkey) to the entire data model

mnum (integer)
if recalc_each_month is True, calculate values for this selected month number

inplace (boolean)
if True, add a column to the input dataframe with the calculated values. If False,
return a numpy array of the calculated values.

271

seniority_list Documentation, Release 0.68

trim_ones (boolean)
if True, replace 100% values (1.0) with a value slightly under 1.0 (.9999). This ac-
tion assists construction of percentile quantiles for membership grouping purposes.

exclude_fur (boolean)
if True, remove furloughed employees from percentage calculations

fixed_col_name (string)
manually designated name for dataframe column when recalc_each_month input
is False and inplace input is True.

running_col_name (string)
manually designated name for dataframe column when recalc_each_month input
is True and inplace input is True.

functions.make_group_lists(df, column_name)

this function is used with Excel input to convert string objects and integers into Python lists
containing integers. This function is used with the count_ratio_dict dictionary construction.
The function works with one column at a time.

Output is a list of lists which may be reinserted into a column of the dataframe.

example:
A/B|C|D
1 16 |0 |“23”
4 5 665”

make_group_lists(df, ["D"])

[z, 31, [51]

This function allows the user to type the string 2,3 into an Excel worksheet cell and have it
interpreted by seniority_list as [2, 3]
inputs
df (dataframe)

dataframe containing Excel employee group codes

column_name
dataframe column name to convert

functions.make_intgrtd_from_sep_stove_lists(job_lists_arr, eg_arr, fur_arr,
eg_total_jobs, num_levels,
skip_fur=True)

Month_Form

272 Chapter 11. functions module

seniority_list Documentation, Release 0.68

Compute an integrated job list built from multiple independent eg stovepiped job lists.
This function is for multiple egs (employee groups) - multiple lists in one job_lists_arr.
Creates an ndarray of job numbers.

Function takes independent job number lists and an array of eg codes which represent the eg
ordering in the proposed list.

Job numbers from the separate lists are added to the result array according to the eg_arr order.
Jobs on each list do not have to be in any sort of order. The routine simply adds items from
the list(s) to the result array slots in list order.

inputs

job_lists_arr
array of the input job number arrays. represents the jobs that would be assigned
to each employee in a list form. each list within the array will be the length of the
respective eg.

eg_arr
short_form array of eg codes (proposal eg ordering)

fur_arr
short_form array of fur codes from proposal

eg_total_jobs
list length n egs sums of total jobs available for each eg, form: [n,n,n]

num_levels
number of job levels in model (excluding furlough level)

skip_fur (boolean)
ignore or skip furloughs when assigning stovepipe jobs. If True, employees who
are originally marked as furloughed are assigned the furlough level number which
is 1 greater than the number of job levels. If False, jobs are assigned within each
employee group in a stovepipe fashion, including those employees who are marked
as furloughed

functions.make_jcnts (job_count_lists)

Make two arrays: 1. array of n lists of job counts for n number of eg job count input lists 2.
array of one summation list of first array (total count of all eg jobs) The arrays above will not
contain a furlough count. Returns tuple (eg_job_counts, combined_job_count)

inputs

job_count_lists
list of the employee job count list(s). If the program is using the enhanced jobs
option, this input will be the output of the convert_jcnts_to_enhanced function.
Otherwise, it will be the eg_counts variable from the settings dictionary.

Example return:

273

seniority_list Documentation, Release 0.68

(array([

[237, 158, 587, 1373, 352, 739, 495, 330, 784,
1457, 0, 471, 785, 0, 0, 0],

[97, 64, 106, 575, 64, 310, 196, 130, 120,
603, 71, 72, 325, 38, 86, 46],

[o0, 0, 33, 414, 20, 223, 0, 0, 46,
395, 0, 28, 213, 0, 0, 011,

array (

[334, 222, 726, 2362, 436, 1272, 691, 460, 950,
2455, 71, 571, 1323, 38, 86, 46]1))

functions.make_lists_from_columns (df, columns, remove_zero_values=False,
try_integers=False, as_tuples=False)

combine columns row-wise into separate lists, return a list of lists

example:
A|/B|C|D
1 1602
41513

make_lists_from_columns(df, ["A", "B", "C"])

(1, 6, 01, [8, 4, 511

make_lists_from_columns(df, ["A", "B", "C"],
remove_zero_values=True,

as_tuples=True)

(1, 6>, (8, 4, 5)]

inputs

df (dataframe)
pandas dataframe containing columns to combine

columns (list)
list of column names

try_integers (boolean)
if True, if all column values are numerical, the output will be converted to integers

remove_zero_values (boolean)
if True, remove zero values from list or tuple outputs. The routine checks for zeros
as a zero value or a list with a single zero value

274 Chapter 11. functions module

seniority_list Documentation, Release 0.68

as_tuples (boolean)
if True, output will be a list of tuples instead of a list of lists

functions.make_lower_slice_limits (month_counts_cumsum)
for use when working with unique month data within larger array (slice).

The top of slice is cumulative sum, bottom of each slice will be each value of this function
output array. Output is used as input for nbnf functions.

inputs

month_counts_cumsum (numpy array)
cumsum of count_per_month function output (employee count each month)

functions.make_original_jobs_from_counts (jobs_arr_arr, eg_array, fur_array,
num_levels)
Short_Form
This function grabs jobs from standalone job count arrays (normally stovepiped) for each

employee group and inserts those jobs into a proposed integrated list, or a standalone list.
Each eg (employee group) is assigned jobs from their standalone list in order top to bottom.

Result is a combined list of jobs with each eg maintaining ordered independent stovepipe
jobs within the combined list of jobs jobs_arr_arr is an array of arrays, likely output[0] from
make_array_of_job_lists function.

Order of job count arrays within jobs_arr_arr input must match emp group codes order (1, 2,
3, etc.).

If total group counts of job(s) is less than slots available to that group, remaining slots will
be assigned (remain) a zero job number (0).

eg_array is list (order sequence) of employee group codes from proposed list with length
equal to length of proposed list.

Result of this function is ultimately merged into long form for no bump no flush routine.

employees who are originally marked as furloughed are assigned the furlough level number
which is 1 greater than the number of job levels.
inputs

jobs_arr_arr (numpy array of arrays)
lists of job counts for each job level within each employee group, each list in order
starting with job level one.

eg_array (numpy array)
employee group (eg) column data from master list source

fur_array
furlough (fur) column data from master list source

275

seniority_list Documentation, Release 0.68

num_levels
number of job levels (without furlough level) in the model

functions.make_preimp_array (ds_stand, ds_integrated, imp_high, compute_cat,
compute_pay)
Create an ordered numpy array of pre-implementation data gathered from the pre-calculated
standalone dataset and a dictionary to keep track of the information. This data will be joined

with post_implementation integrated data and then copied into the appropriate columns of
the final integrated dataset.

inputs

ds_stand (dataframe)
standalone dataset

ds_integrated (dataframe)
dataset ordered for proposal

imp_high
highest index (row number) from implementation month data (from long-form
dataset)

compute_cat (boolean)
if True, compute and append a job category order column

compute_pay (boolean)
if True, compute and append a monthly pay column and a career pay column
functions.make_starting_val_column(df, attr, inplace=True)

make an array of values derived from the input dataframe which will reflect the starting value
(month zero) of a selected attribute. Each employee will be assigned the zero-month attribute
value specific to that employee, duplicated in each month of the data model.

This column allows future attribute analysis with a constant starting point for all employees.
For example, retirement job position may be compared to initial list percentage.

assign to long-form dataframe:

df['start_attr'] = make_starting_val_column(df, attr)

input

df (dataframe)
pandas dataframe containing the attr input column and a month number coulumn.
The dataframe must be indexed with employee number code integers (‘empkey’)

attr (column name in df)
selected zero-month attribute (column) from which to assign values to the remain-
ing data model months

276 Chapter 11. functions module

seniority_list Documentation, Release 0.68

functions.make_stovepipe_jobs_from_jobs_arr (jobs_arr, total_emp_count=0)
Month_Form

Compute a stovepipe job list derived from the total count of jobs in each job level.
This function is for one eg (employee group) and one jobs_arr (list).
Creates an array of job numbers from a job count list (converted to np.array).

Result is an array with each job number repeated n times for n job count. - job count list like
: job_counts = [334, 222, 701, 2364] - jobs_array = np.array(job_counts)

inputs

jobs_arr (numpy array)
job counts starting with job level 1

total_emp_count
if zero (normal input), sum of jobs_arr elements, otherwise user-defined size of
result_jobs_arr

functions.make_stovepipe_prex_shortform(job_list, sg_codes, sg_rights, fur_codes)
Short_Form

Creates a ‘stovepipe’ job assignment within a single eg including a special job assignment
condition for a subgroup. The subgroup is identified with a 1 in the sg_codes array input,
originating with the sg column in the master list.

This function applies a pre-existing (prior to the merger) contractual job condition, which is
likely the result of a previous seniority integration.

The subset group will have proirity assignment for the first n jobs in the affected job category,
the remainding jobs are assigned in seniority order.

The subgroup jobs are assigned in subgroup stovepipe order. This function is applicable
to a condition with known job counts. The result of this function is used with standalone
calculations or combined with other eg lists to form an integrated original job assignment

list.
inputs

job_list
list of job counts for eg, like [23,34,0,54,...]

sg_codes
ndarray eg group members entitled to job condition (marked with 1, others marked
0) length of this eg population

sg_rights

list of lists (from settings dictionary) including job numbers and job counts for
condition. Columns 2 and 3 are extracted for use.

277

seniority_list Documentation, Release 0.68

fur_codes
array of ones and zeros, one indicates furlough status

functions.make_tuples_from_columns (df, col_list, return_as_list=True, date_cols=[],
return_dates_as_strings=False,

date_format="'%Y-%m-%d")

Combine row values from selected columns to form tuples. Returns a list of tuples which
may be assigned to a new column. The length of the list is equal to the length of the input
dataframe. Date columns may be first converted to strings before adding to output tuples if
desired.

inputs
df (dataframe)

input dataframe

col_list (list)
columns from which to create tuples

return_as_list (boolean)
if True, return a list of tuples

date_cols (list)
list of columns to treat as dates

return_dates_as_strings (boolean)
if True, for columns within the data_cols input, convert date values to string format

date_format (string)
string format of converted date columns

functions.mark_for_furlough(orig_range, fur_range, month, jobs_avail,
num_of_job_levels)
Assign fur code to employees when count of jobs is less than count of active employees in
inverse seniority order and assign furloughed job level number. note: normally only called
during a job change month though it will do no harm if called in other months
inputs
orig_range
current month slice of jobs held

fur_range
current month slice of fur data

month
current month (loop) number

jobs_avail
total number of jobs for each month array, job_gain_loss_table function output [1]

278 Chapter 11. functions module

seniority_list Documentation, Release 0.68

num_of_job_levels
from settings dictionary, used to mark fur job level as num_of_job_levels + 1

functions.mark_for_recall (orig_range, num_of _job_levels, fur_range, month,
recall_sched, jobs_avail, standalone=True, eg_index=0,
method='sen_order', stride=2)

change fur code to non-fur code for returning employees according to selected method (se-
niority order, every nth furloughee, or random) note: function assumes it is only being called
during a recall month

inputs

orig_range
original job range

num_of_job_levels
number of job levels in model, normally from settings dictionary

fur_range
current month slice of fur data

month
current month (loop) number

recall sched
list(s) of recall schedule (recall amount/month, recall start month, recall end month)

jobs_avail
total number of jobs for each month array, job_gain_loss_table function output [1]

standalone (boolean)
This function may be used with both standalone and integrated dataset generation.
Set this variable to True for use within standalone dataset calculation, False for
integrated dataset calculation routine.

eg_index (integer)
selects the proper recall schedule for standalone dataset generation, normally from
a loop increment. The recall schedule is defined in the settings dictionary. set to
zero for an integrated routine (integrated routine uses a global recall schedule)

method
means of selecting employees to be recalled default is by seniority order, most
senior recalled first other options are:

stride:
i.e. every other nth employee. (note: could be multiple strides per month if
multiple recall lists are designated).

random:
use shuffled list of furloughees

279

seniority_list Documentation, Release 0.68

stride
set stride if stride option for recall selected. default is 2.
functions.mark_fur_range (assign_range, fur_range, job_levels)
apply fur code to current month fur_range based on job assignment status

inputs
assign_range
current month assignment range (array of job numbers, 0 indicates no job)

fur_range
current month fur status (1 means furloughed, O means not furloughed)

job_levels
number of job levels in model (from settings dictionary)
functions.max_of_nested_lists(nested list, return_min=False)
Find the maximum value within a list of lists (or tuples or arrays). The function may optionally
return the minimum value within nested containers.

inputs

nested_list (list, tuple, or array)
nested container input

return_min (boolean)
if True, return minimum of nested_list input (vs. max)
functions.monotonic (sequence)

test for stricly increasing array-like input May be used to determine when need for no bump,
no flush routine is no longer required. If test is true, and there are no job changes, special
rights, or furlough recalls, then a straight stovepipe job assignment routine may be imple-
mented (fast).

inputs

sequence
array-like input (list or numpy array ok)

functions.print_settings()

grab settings dictionary data settings and put it in a dataframe and then print it for a quick
summary of scalar settings dictionary inputs

functions.remove_zero_groups (ratio_dict)
remove data related to a “dummy” group represented by a zero

example:

{2: [CL21, (01, [1DD, [0, 2, 6], 34, 120]}

becomes:

280 Chapter 11. functions module

seniority_list Documentation, Release 0.68

{2: [Cf21, [1DD, [0, 61, 34, 120]}

inputs

ratio_dict (dictionary)
the ratio dictionary produced by the build_program_files script originating from
the “ratio_cond” worksheet of the settings.xlsx input file

functions.sample_dataframe (df, n=None, frac=None, reset_index=False)

Get a random sample of a dataframe by rows, with the number of rows in the returned sample
defined by a count or fraction input.

inputs

df (dataframe)
pandas dataframe for sampling

n (integer)
If not None, the count of the rows in the returned sample dataframe. The “n” input
will override the “frac” input if both are not None. Will be clipped between zero
and len(df) if input exceeds these boundries.

frac (float)
If not None, the size of the returned sample dataframe relative to the input
dataframe. Will be ignored if “n” input is not None. Will be clipped between
0.0 and 1.0 if input exceeds these boundries. An input of .3 would randomly select

30% of the rows from the input dataframe.

reset_index (boolean)
If True, reset the output dataframe index

If both the “n” and “frac” inputs are None, a random single row will be returned.
The rows in the output dataframe will be sorted according to original order.
functions.save_and_load_dill_folder (save_as=None, load_case=None,
print_saved=False)
Save the current “dill” folder to the “saved_dill _folders” folder, or load a saved dill folder as

the “dill” folder if it exists.

This function allows calculated case study pickle files (including the calculated datasets) to
be saved to or loaded loaded from a “saved_dill_folders” folder.

The “saved_dill_folders” folder is created if it does not already exist. The load_case input
is a case study name. If the load_case input is set to None, the function will only save the
current dill folder and do nothing else. If a load_case input is given, but is incorrect or no
matching folder exists, the function will only save the current dill folder and do nothing else.

281

seniority_list Documentation, Release 0.68

The user may print a list of available saved dill folders (for loading) by setting the print_saved
input to True. No other action will take place when this option is set to True.

If an award has conditions which differ from proposed conditions, the settings dictionary
must be modified and the dataset rebuilt.

This function allows previously calculated datasets to be quickly retrieved and eliminates
continual adjustment of the settings spreadsheet if the user switches between case studies
(assuming the award has been determined and no more input adjustment will be made).

inputs

save_as (string)
A user-specified folder prefix. If None, the current “dill” folder will be saved using
the current case study name as a prefix. If set to a string value, the current dill
folder will be saved with the “save_as” string value prefix.

Example with the save_as variable set to “test1”. The existing dill folder would be
saved as:

saved_dill_folders/testl_dill_folder

load_case (string)
The name of a case study. If None, the only action performed will be to save the
current “dill” folder to the “saved_dill folders” folder. If the load_case variable is
a valid case study name and a saved dill folder for that case study exists, the saved
dill folder will become the current dill folder (contents of the saved dill folder will
be copied into the current dill folder). This action will occur after the contents of
the current dill folder are copied into the “saved_dill_folders” folder.

print_saved (boolean)
option to print the saved folder prefixes only. This provides a quick check of the
folders available to be loaded. No other action will take place with this option set
to True.

functions. set_snapshot_weights (job, ratio_dict, orig_rng, eg_range)
Determine the job distribution ratios to carry forward during the ratio condition application
period using actual jobs held ratios. likely called at implementation month by main job as-
signment function Count the number of jobs held by each of the ratio groups for each of the
affected job level numbers. Set the weightings in the distribute function accordingly.

inputs

ratio_dict (dictionary)
dictionary containing job levels as keys and ratio groups, weightings, month_start
and month end as values.

orig_rng (numpy array)
month slice of original job array

282 Chapter 11. functions module

seniority_list Documentation, Release 0.68

eg_range (numpy array)
month slice of employee group code array

functions.squeeze_increment (data, eg, low_num, high_num, increment)

Move members of a selected eg (employee group) within a list according to an increment
input (positive or negative) while retaining relative ordering within all eg groups.

inputs

data (dataframe)
dataframe with empkey as index which at minimum includes an order column and
an eg column

eg (integer)
employee group number code

low_num and high_num
indexes for the beginning and end of the list zone to be reordered

increment (integer)
the amount to add or subrtract from the appropriate eg order number increment can
be positive (move down list) or negative (move up list - toward zero)

Selected eg order numbers within the selected zone (as a numpy array) are incremented - then
the entire group order numbers are reset within the zone using scipy.stats.rankdata.

The array is then assigned to a dataframe with empkeys as index.

functions.squeeze_logrithmic(data, eg, low_value, high_value, log_factor=1.5,
put_segment=1, direction='d")

perform a log squeeze (logrithmic-based movement of one eg (employee group), determine
the closest matching indexes within the rng to fit the squeeze, put the affected group in those
indexes, then fill in the remaining slots with the other group(s), maintaining orig ordering
within each group at all times

inputs

data (dataframe)
a dataframe indexed by empkey with at least 2 columns: employee group (eg) and
order (order)

eg (employee code integer)
the employee group to move

low_val and high_val (integers)
integers marking the boundries (rng) for the operation (H must be greater than L)

log_factor (float)
determines the degree of ‘logrithmic packing’

put_segment (float)
allows compression of the squeeze result (values under 1)

283

seniority_list Documentation, Release 0.68

direction (string)
squeeze direction: “u” - move up the list (more senior) “d” - move down the list
(more junior)

functions.starting_age(dob_input, start_date)
Short_Form

Returns decimal age at given date.

“dob_input” (birth dates) may be in the form of a pandas dataframe, pandas series, list, or
string

inputs

dob_list (dataframe, series, list, or string)
birth dates input

start_date
comparative date for the birth dates, normally the data model starting date

functions.update_excel (case, file, ws_dict={}, sheets_to_remove=None)

Read an excel file, optionally remove worksheet(s), add worksheets or overwrite worksheets
with a dictionary of ws_name, dataframe key, value pairs, and write the excel file back to disk

inputs

case (string)
the data model case name

file (string)
the excel file name without the .xIsx extension

ws_dict (dictionary)
dictionary of worksheet names as keys and pandas dataframes as values. The items
in this dictionary will be passed into the excel file as worksheets. The worksheet
name keys may be the same as some or all of the worksheet names in the excel file.
In the case of matching names, the data from the input dict will overwrite the exist-
ing data (worksheet) in the excel file. Non-overlapping worksheet names/dataframe
values will be added as new worksheets.

sheets_to_remove (list)
a list of worksheet names (strings) representing worksheets to remove from the
excel workbook. It is not necessary to remove sheets which are being replaced by
worksheet with the same name.

284 Chapter 11. functions module

CHAPTER
TWELVE

INTERACTIVE_PLOTTING MODULE

Interactive chart example running a bokeh server

interactive_plotting.bk_basic_interactive(doc, df=None, plot_height=700,
plot_width=900, dot_size=5)

run a basic interactive chart as a server app - powered by the bokeh plotting library. Run the
app in the jupyter notebook as follows:

from functools import partial
import pandas as pd

import interactive_plotting as ip
from bokeh.io import show, output_notebook

from bokeh.application.handlers import FunctionHandler
from bokeh.application import Application

output_notebook ()

proposal = 'pl’
df = pd.read_pickle('dill/ds_" + proposal + '.pkl")

handler = FunctionHandler(partial(ip.bk_basic_interactive, df=df))

app = ApplicationChandler)
show (app)

inputs

doc (required input)
do not change this input

df (dataframe)
calculated dataset input, this is a required input

285

seniority_list Documentation, Release 0.68

plot_height (integer)
height of plot in pixels

plot_width (integer)
width of plot in pixels

Add plot_height and/or plot_width parameters as kwargs within the partial method

handler = FunctionHandler(partial(ip.bk_basic_interactive,
df=df,
plot_height=450,
plot_width=625))

Note: the “df” argument is not optional, a valid dataset variable must be assigned.

286

Chapter 12. interactive_plotting module

CHAPTER
THIRTEEN

LIST_BUILDER MODULE

The list_builder module contains routines to build list orderings from the master list data as a starting
point for further analysis and/or list editing. Lists may be built by various weighting and sorting
methods.

Typical workflow:

prepare_master_list - add columns to master list which can be used as hybrid list factors. These
columns are longevity, job, and percentage related.

build_list - select, apply weighting, organize and sort a “hybrid” list.

Note: the sort_eg_attributes and sort_and_rank functions are helper functions which may be used
as standalone functions as well.

sort_eg_attributes - normally used within the prepare_master_list function. Sort date-type at-
tributes by employee group to form a chronological order within each group without disturbing
other columns order. (also works with any other attribute if needed). Typical date columns to
prepare in this manner would be doh and ldate.

The sort_and_rank is a helper function for the build_list function.

The build_list function stores a pickle file that can then be used as an input to the compute_measures
script. Example:

%run compute_measures.py hybrid

list_builder.build_list(df, measure_list, weight_list, show_weightings=False,
hide_rank_cols=True, return_df=False)

Construct a “hybrid” list ordering.
Note: first run the “prepare_master_list” function and use the output for the “df” input here.

Combine and sort various attributes according to variable multipliers to produce a list order.
The list order output is based on a sliding scale of the priority assigned amoung the attributes.

The default output is a dataframe containing the new hybrid list order and employee numbers
(empkey) only, and is written to disk as ‘dill/p_hybrid.pkl’.

287

seniority_list Documentation, Release 0.68

The entire hybrid-sorted dataframe may be returned by setting the “return_df” input to True.
This does not affect the hybrid list order dataframe - it is produced and stored regardless of
the “return_df” option.

inputs

df
the prepared dataframe output of the prepare_master_list function

measure_list
a list of attributes that form the basis of the final sorted list. The employee groups
will be combined, sorted, and numbered according to these attributes one by one.
Each time the current attribute numbered list is formed, a weighting is applied to
that order column. The final result number will be the rank of the cummulative
total of the weighted attribute columns.

weight_list
a list of decimal weightings to apply to each corresponding measure within the
measure_list. Normally the total of the weight_list should be 1, but any numbers
may be used as weightings since the final result is a ranking of a cumulative total.

show_weightings
add columns to display the product of the weight/column mutiplcation

return_df
option to return the new sorted hybrid dataframe as output. Normally, the function
produces a list ordering file which is written to disk and used as an input by the
compute measures script.

hide_rank_cols
remove the attrubute rank columns from the dataframe unless visual review is de-
sired

list_builder.compare_dataframes (base, compare, ignore_case=True, print_info=True,

convert_np_timestamps=True)

Compare all common index and common column DataFrame values and report if any value
is not equal in a returned dataframe.

This function is primarily intended to compare proposal ordering lists and initial master data
lists. It will spot problems with empkey duplications or mismatches in addition to value
differences in any of the columns of a master list.

Values are compared only by index and column label, not order. Therefore, the only values
compared are within common index rows and common columns. The routine will report
the common columns and any unique or duplicated index rows when the print_info option is
selected (True, default setting). Any duplicated indexes (empkeys) within a single group list
or individual index values not found in the other employee group list must be resolve prior to
creating datasets.

288

Chapter 13. list_builder module

seniority_list Documentation, Release 0.68

The function will also find and print value differences found within all of the common
columns for every employee.

Inputs are pandas dataframes and/or pandas series.

This function works well when comparing initial data lists, such as those which may be re-
ceived from opposing parties. Both master lists should be formatted to match the example
master.xlsx within the sample3 demo excel folder.

inputs

base
baseline dataframe or series

compare
dataframe or series to compare against the baseline (base)

ignore_case
convert the column labels and column data to be compared to lowercase - this will
avoid differences detected based on string case

print_info
option to print out to console verbose statistical information and the dataframe(s)
instead of returning dataframe(s)

convert_np_timestamps
numpy returns datetime64 objects when the source is a datetime date-only object.
this option will convert back to a date-only object for comparison.
list_builder. find_index_locs (df, index_values)
Find the pandas dataframe index location of an array-like input of index labels.

Returns a list containing the index location(s).
inputs
df

dataframe - the index_values input is a subset of the dataframe index.

index_values
array-like collection of values which are a subset of the dataframe index

list_builder. find_row_orphans (base_df, compare_df, col, ignore_case=True,
print_output=False)
Given two columns (series) with the same column label in separate pandas dataframes, return
values which are unique to one or the other column, not common to both series. Will also
work with dataframe indexes.

Returns tuple (base_loners, compare_loners) if not print_output. These are dataframes with
the series orphans.

289

seniority_list Documentation, Release 0.68

Note: If there are orphans found that have identical values, they will both be reported. How-
ever, currently the routine will only find the first corresponding index location found and
report that location for both orphans.

inputs

base_df
first dataframe to compare

compare_df
second dataframe to compare

col
column label of the series to compare. routine will compare the dataframe indexes
with the input of ‘index’.

ignore_case
convert col to lowercase prior to comparison

print_output
print results instead of returning results

list_builder.find_series_locs(df, series_values, column_label)
Find the pandas dataframe index location of an array-like input of series values.

Returns a list containing the index location(s).
inputs

df
dataframe - the series_values input is a subset of one of the dataframe columns.

series_values
array-like collection of values which are a subset of one of the dataframe columns
(the column_lable input)

column_label
the series within the pandas dataframe containing the series_values

list_builder.names_to_integers (names, leading_precision=>5, normalize_alpha=True)

convert a list or series of string names (i.e. last names) into integers for numerical sorting
Returns tuple (int_names, int_range, name_percentages)
inputs

names
List or pandas series containing strings for conversion to integers

leading_precision
Number of characters to use with full numeric precision, remainder of characters
will be assigned a rounded single digit between 0 and 9

290 Chapter 13. list_builder module

seniority_list Documentation, Release 0.68

normalize_alpha
If True, insert ‘aaaaaaaaaa’ and ‘zzzzzzzzzz’ as bottom and top names. Otherwise,
bottom and top names will be calculated from within the names input

output
1. an array of the name integers
2. the range of the name integers,

3. an array of corresponding percentages for each name integer relative to the range of
name integers array

Note: This function demonstrates the possibility of constructing a list using any type or com-
bination of attributes.

list_builder.prepare_master_list (name_int_demo=False, pre_sort=True)
Add attribute columns to a master list. One or more of these columns will be used by the
build_list function to construct a “hybrid” list ordering.

Employee groups must be listed in seniority order in relation to employees from the same
group. Order between groups is uninmportant at this step.

New columns added: [‘age’, ‘s_lmonths’, ‘jnum’, ‘job_count’, ‘rank_in_job’, ‘jobp’,
‘eg_number’, ‘eg_spcnt’]

inputs

name_int_demo
if True, Iname strings are converted to an integer then a corresponding alpha-
numeric percentage for constructing lists by last name. This is a demo only to
show that any attribute may be used as a list weighting factor.

pre_sort
sort the master data dataframe doh and ldate columns prior to beginning any cal-
culations. This sort has no effect on the other columns. The s_Imonths coulumn
will be calculated on the sorted ldate data.

Job-related attributes are referenced to job counts from the settings dictionary.

list_builder.sort_and_rank(df, col, tiebreakerl=None, tiebreaker2=None, reverse=False)
Sort a datframe by a specified attribute and insert a column indicating the resultant ranking.
Tiebreaker inputs select columns to be used for secondary ordering in the event of value ties.
Reverse ordering may be selected as an option.
inputs
df

input dataframe

col (string)
dataframe column to sort

291

seniority_list Documentation, Release 0.68

tiebreakerl1, tiebreaker2 (string(s))
second and third sort columns to break ties with primary col sort

reverse (boolean)
If True, reverses sort (descending values)

list_builder.sort_eg_attributes(df, attributes=['doh’, 'ldate'], reverse_list=[0, 0],
add_columns=False)

Sort master list attribute columns by employee group in preparation for list construction. The
overall master list structure and order is unaffected, only the selected attribute columns are
sorted (normally date-related columns such as doh or ldate)

inputs
df
The master data dataframe (does not need to be sorted)
attributes

columns to sort by eg (inplace)

reverse_list
If an attribute is to be sorted in reverse order (descending), use a ‘1’ in the list
position corresponding to the position of the attribute within the attributes input

add_columns
If True, an additional column for each sorted attribute will be added to the resultant
dataframe, with the suffix ‘_sort’ added to it.

list_builder.test_df_col_or_idx_equivalence(dfl, df2, col=None)

check whether two dataframes contain the same elements (but not necessarily in the same
order) in either the indexes or a selected column

inputs
df1, df2
the dataframes to check
col

if not None, test this dataframe column for equivalency, otherwise test the
dataframe indexes

Returns True or False

292 Chapter 13. list_builder module

CHAPTER
FOURTEEN

MATPLOTLIB_CHARTING MODULE

Plotting functions and supporting utility functions.

matplotlib_charting.add_pad(list_in, pad=100)

Separate all elements in a monotonic list by a minimum pad value.
Used by plotting functions to prevent overlapping tick labels.
inputs
list_in (list)
a monotonic list of numbers

pad (integer)
the minimum separation required between list elements

If the function is unable to produce a list with the pad between all elements (excluding the
last list spacing), the original list is returned. The function will permit the final list padding
(between the last two elements) to be less than the pad value.

matplotlib_charting.age_kde_dist (df, color_list, p_dict, max_age, ds_dict=None,
mnum=0, title_size=14, min_age=235,
chart_style='darkgrid', xsize=12, ysize=10,
image_dir=None, image_format="'png")

From the seaborn website: Fit and plot a univariate or bivariate kernel density estimate.
inputs

df (dataframe)
dataset to examine, may be a dataframe variable or a string key from the ds_dict
dictionary object

color_list (list)
list of colors for employee group plots

p_dict (dictionary)
eg to string dict for plot labels

293

seniority_list Documentation, Release 0.68

max_age (float)
maximum age to plot (x axis limit)

ds_dict (dictionary)
output from load_datasets function

mnum (integer)
month number to analyze

title_size (integer or float)
text size of chart title

min_age
minimum age to plot (x axis limit)

chart_style
seaborn chart style

xsize
chart height

ysize
chart width

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
CSVg” ‘png’
matplotlib_charting.age_vs_spcnt (df, eg_list, mnum, color_list, p_dict, ret_age,

ds_dict=None, attrl=None, operl=">=', vall=0,
attr2=None, oper2=">=', val2=0, attr3=None,
oper3='>=', val3=0, chart_style='darkgrid’, size=20,
alpha=0.8, suptitle_size=14, title_size=12,
legend_size=12, xsize=10, ysize=8, image_dir=None,
image_format='png")

scatter plot with age on x axis and list percentage on y axis. note: input df may be prefiltered to

plot focus attributes, i.e. filter to include only employees at a certain job level, hired between
certain dates, with a particular age range, etc.

inputs

df (string or dataframe)
text name of input proposal dataset, also will accept any dataframe variable (if a

294 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

sliced dataframe subset is desired, for example) Example: input can be ‘proposall’
(if that proposal exists, of course, or could be df[df.age > 50])

eg_list (list)
list of employee groups to include example: [1, 2]

mnum (int)
month number to study from dataset

color_list (list)
color codes for plotting each employee group

p_dict (dict)
dictionary, numerical eg code to string description

ret_age (integer or float)
chart xaxis limit for plotting

ds_dict (dict)
variable assigned to the output of the load_datasets function, reqired when string
dictionary key is used as df input

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate)
attr(n) limiting value (combined with oper(n)) as string

chart_style (string)
any valid seaborn plotting style

size (integer)
size of scatter points

alpha (float)
scatter point alpha (0.0 to 1.0)

suptitle_size (integer or font)
text size of chart super title

title_size (integer or float)
text size of chart title

legend_size (integer or float)
text size of chart legend

xsize, ysize (integer or float)
plot size in inches

295

seniority_list Documentation, Release 0.68

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
‘SVg” ‘png’
matplotlib_charting.build_subplotting_order (rows, cols)

build a list of integers to permit passing through subplots by columns note: only used when
looping completes one vertical column before continuing to next column

inputs

rows, cols (integer)
number of rows and columns in multiple chart output

matplotlib_charting.check_eg_input (eg_list, df)

Discover and handle an eg_list input referencing an employee group that does not exist within
the current data model.

inputs
eg_list (list or integer)

df
df (pandas dataframe containing an “eg” column)

matplotlib_charting.cohort_differential (ds, base, sdict, cdict, adict, measure='ldate’,

compare_value="2010-12-31', mmum=None,
ds_dict=None, single_eg_compare=None,
sort_xax_by_measure=False, attrI=None,
operl=">=' vall=0, attr2=None,
oper2=">=' val2=0, attr3=None,
oper3=">=',val3=0, pos_color='"g’,
neg_color="r', pos_alpha=0.25,
neg_alpha=0.25, bg_color=None,
zero_line_color="m’, title_size=16,
label _size=14, tick_size=12.5,
legend_size=12.5, xsize=14, ysize=10,
image_dir=None, image_format="png")

Compare proposed integrated list locations of employees from different groups who share a

similar attribute value.

This function is best used with date-type attributes, such as longevity date or date of hire.

The comparative list locations are a continuous list of index locations determined by find-
ing the last list position within an attribute column from another employee group which is

296 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

less than or equal to a corresponding column from the base employee group. A variance or
differential is calculated by comparing the base and comparative locations.

Attributes (measures) are sorted within each employee group prior to comparison. The x axis
may be arranged to display proposed list ordering or the attribute value range (typically a date
range).

Differences in list position are shown with a line above or below zero. One employee group
(base) is compared to other group(s) in the proposed list within a selected month. When the
line is above zero, it means that the base group cohort at a particular x axis position is on the
list ahead of another group cohort by an amount equal to the y displacement of the line. The
line colors correspond to the employee group color codes.

The default behavior is to compare the base group with all other groups at once, but single
group comparison may be accomplished as well.

When the x axis is set to display list location (not attribute values), the user may designate a
compare value. The list location of employees from each group who share the comparison
attribute value will be marked on the chart with a color-coded vertical line.

inputs

ds (dataframe)
dataset for analysis

base (integer)
employee group number code

sdict (dictionary)
program settings dictionary

cdict (dictionary)
program color dictionary

adict (dictionary)
program attribute dictionary

measure (string)
attribute column for list location comparison, likely ‘ldate’ or ‘doh’

compare_value (type to match measure input dtype)
value to mark on chart if “sort_xax_by_measure” input is False. Likely a date
string, such as “2001-01-31”

mnum (integer)
data model month number to study

ds_dict (dictionary)
dictionary of datasets, likely generated by the “load_datasets” function

single_eg compare (integer)
if not None, compare base employee group to this group only

297

seniority_list Documentation, Release 0.68

sort_xax_by_measure (boolean)
if True, use an x axis for the chart based on the selected measure. if False, use list
location for the x axis

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate))
attr(n) limiting value (combined with oper(n)) as string

pos_color, neg_color (color value string)
color used for the positive and negative area shading

pos_alpha, neg_alpha (integer or float)
transparency value assigned to the positive and negative color shading areas (0.0
to 1.0)

bg_color (color value string)
if not None, the color for the chart background

zero_line_color (color value string)
color for the zero line

title_size (integer or float)
text size for the chart title

label_size (integer or float)
text size for the chart axis labels

tick_size (integer or float)
text size for the chart tick labels

legend_size (integer or float)
text size for the chart legend

xsize, ysize (integer or float)
size of the chart in inches (width, height)

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:

GSVg’, ‘png’

298 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

matplotlib_charting.cond_test (df, grp_sel, enhanced_jobs, job_colors, job_dict,
basic_jobs=None, ds_dict=None, plot_all_jobs=False,
min_mnum=None, max_mnum=None,
limit_to_jobs=None, use_and=False,
print_count_months=None, print_all_counts=False,
plot_job_bands_chart=True, only_target_bands=False,
legend_size=14, title_size=16, xsize=8, ysize=8,
image_dir=None, image_format="png")

visualize selected job counts over time applicable to computed condition with optional print-
ing of certain data.

Primary usage is validation of job assignment conditions by charting the count(s) of job(s)
assigned by the program to particular employee groups over time.

The function may also be used to evaluate distribution of jobs with various proposals. Career
progression of employees who enjoy special job rights may be understood particularily well
by utilizing the print_all_counts option.

The output is 2 charts. The first chart is a line chart displaying selected job count information
over time. The second is a stacked area chart displaying all job counts for the selected group(s)
over time.

There are additional optional print outputs. The print_all_counts option will print a dataframe
containing job count totals for each month. The print_count_months input is a list of months
to print the only the plotted job counts, primarily for testing purposes.

inputs

df (dataframe)
dataset(dataframe) to examine

grp_sel (list)
integer input(s) representing the employee group code(s) to select for analysis. This
argument also will accept the string ‘sg’ to select a special job rights group(s).
Multiple inputs are normally handled as ‘or’ filters, meaning an input of [1, ‘sg’]
would mean employee group 1 or any special job rights group, but can be modified
to mean only group 1 and special job rights employees with the ‘use_and’ input.

enhanced_jobs (boolean)
if True, basic_jobs input job levels will be converted to enhanced job levels with
reference to the job_dictionary input, otherwise basic_jobs input job levels will be
used

job_colors (list)
list of color values to use for job plots

job_dict (dictionary)
dictionary containing basic to enhanced job level conversion data. This is likely
the settings dictionary “jd” value.

299

seniority_list Documentation, Release 0.68

basic_jobs (list)
basic job levels to plot. This list will be converted to the corresponding enhanced
job list if the enhanced_jobs input is set to True. Defaults to [1] if not assigned.

ds_dict (dictionary)
dataset dictionary which allows df input to be a string description (proposal name)

plot_all_jobs (boolean)
option to plot all of the job counts within the input dataset vs only those selected
with the basic_jobs input (or as converted to enhanced jobs if enhanced_jobs input
is True). The jobs plotted may be filtered by the limit_to_jobs input.

min_mnum (integer)
integer input, only plot data including this month forward(mnum). Defaults to zero.

max_mnum (integer)
integer input, only plot data through selected month (mnum). Defaults to maximum
mnum for input data

limit_to_jobs (list)
a list of jobs to plot, allowing focus on target jobs. Should be a subset of normal
output, otherwise no filtering of normal output occurs

use_and (boolean)
when the grp_sel input has more than one element, require filtered dataframe for
analysis to be part of all grp_sel input sets.

print_count_months (list)
list of month(s) for printing job counts

print_all_counts (boolean)
if True, print the entire job count dataframe.

plot_job_bands_chart (boolean)
if True, plot an area chart beneath the job count chart. The area chart will display
all of the jobs available to the selected employee group(s) over time with job band
areas

only_target_bands (boolean)
if True, plot area chart of jobs from job count chart only, vs the default of all job
levels

legend_size (integer or float)
text size of legend labels

title_size (integer or float)
text size of chart title

xsize, ysize (integer or float)
size of chart display in inches (width and height)

300

Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
13 SVg” ‘png’
matplotlib_charting.determine_dataset (ds_def, ds_dict=None, return_label=False)

this function permits either a dictionary key (string) or a dataframe variable to be used in
functions as a dataframe object.

inputs

ds_def (dataframe or string)

A pandas dataframe or a string representing a key for a dictionary which contains
dataframe(s) as values

ds_dict (dictionary)
A dictionary containing string to dataframes, used if ds_def input is not a dataframe

return_label (boolean)
If True, return a descriptive dataframe label if the ds_dict was referenced, otherwise
return a generic “Proposal” string

matplotlib_charting.diff_range (df list, dfb, measure, eg_list, attr_dict, ds_dict=None,

cm_name="Setl’, attrI=None, operl=">=", val]=0,
attr2=None, oper2=">=', val2=0, attr3=None,
oper3=">=', val3=0, year_clip=2042,
show_range=False, range_alpha=0.25,
show_mean=True, normalize_y=False, suptitle_size=16,
title_size=16, tick_size=13, label_size=16,
legend_size=14, chart_style="whitegrid', ysize=6,
xsize=11, image_dir=None, image_format='png")

Plot a range of differential attributes or a differential average over time. Individual employee

groups and proposals may be selected. Each chart indicates the results for one group with

color bands or average lines indicating the results for that group under different proposals.

This is different than the usual method of different groups being plotted on the same chart.

inputs

df_list (list)
list of datasets to compare, may be ds_dict (output of load_datasets function) string
keys or dataframe variable(s) or mixture of each

dfb (dataframe, can be proposal string name)
baseline dataset, accepts same input types as df_list above

301

seniority_list Documentation, Release 0.68

measure (string)
differential data to compare

eg_list (list)
list of integers for employee groups to be included in analysis. example: [1, 2, 3]
A chart will be produced for each employee group number.

eg_colors (list)
list of colors to represent different proposal results

attr_dict (dictionary)
dataset column name description dictionary

ds_dict (dictionary)
output from load_datasets function

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate))
attr(n) limiting value (combined with oper(n)) as string

year_clip (integer)
only plot data up to and including this year

show_range (boolean)
show a transparent background on the chart representing the range of values for
each measure for each proposal

range_alpha (float)
transparancy level for range plotting (0.0 to 1.0)

show_mean (boolean)
plot a line representing the average of the measure values for the group under each
proposal

normalize_y (boolean)
if measure is ‘spcnt’ or ‘Ispent’, equalize the range of the y scale on all charts (-.5
to .5)

suptitle_size (integer or font)
text size of chart super title

title_size (integer or font)
text size of chart title

tick_size (integer or font)
text size of chart tick labels

302

Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

label_size (integer or font)
text size of chart x and y axis labels

legend_size (integer or font)
text size of the legend labels

chart_style (string)
any valid seaborn plotting style (string)

xsize, ysize (integer or font)
size of chart in inches (width and height)

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
‘svg’, ‘png’

matplotlib_charting.differential_scatter (df list, dfb, measure, eg_list, attr_dict,
color_dict, p_dict, ds_dict=None,
attrl=None, operl=">=', vall=0,
attr2=None, oper2=">=', val2=0,
attr3=None, oper3=">=', val3=0,
prop_order=True, show_scatter=True,
show_lin_reg=True, show_mean=True,
mean_len=50, dot_size=135,
lin_reg_order=15, ylimit=False, ylim=35,
suptitle_size=14, title_size=12,
legend_size=14, tick_size=11,
label_size=12, bright_bg=False,
bright_bg_color="#faf6eb’,
chart_style="whitegrid', xsize=12, ysize=8,
image_dir=None, image_format="png")

plot an attribute differential between datasets.
datasets may be filtered by other attributes if desired.

Example: “plot the difference in cat_order (job rank number) between all integrated datasets
vs. standalone for all employee groups, applicable to month 57.” (optionally add a pre-
filter(s), such as all employees hired prior to a certain date)

The chart may be set to use proposal order or native list percentage for the x axis.

The scatter markers are selectable on/off, as well as an average line and a linear regression
line.

303

seniority_list Documentation, Release 0.68

inputs

df list (list)
list of datasets to compare, may be ds_dict (output of load_datasets function) string
keys or dataframe variable(s) or mixture of each

dfb (string or variable)
baseline dataset, accepts same input types as df_list above

measure (string)
attribute to analyze

eg_list (list)
list of employee group codes

attr_dict (dictionary)
dataset column name description dictionary

color_dict (dictionary)
dictionary containing color list string titles to lists of color values generated by the
build_program_files script

p_dict (dictionary)
employee group code number to description dictionary

ds_dict (dictionary)
output from load_datasets function

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate)
attr(n) limiting value (combined with oper(n)) as string

eg_list (list)
a list of employee groups to analyze

prop_order (boolean)
if True, organize x axis by proposal list order, otherwise use native list percent

show_scatter (boolean)
if True, draw the scatter chart markers

show_lin_reg (boolean)
if True, draw linear regression lines

show_mean (boolean)
if True, draw average lines

304

Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

mean_len (integer)
moving average length for average lines

dot_size (integer or float)
scatter marker size

lin_reg_order (integer)
regression line is actually a polynomial regression lin_reg_order is the degree of
the fitting polynomial

ylimit (boolean)
if True, set chart y axis limit to ylim (below)

ylim (integer or float)
y axis limit positive and negative if ylimit is True

suptitle_size (integer or float)
text size of chart super title

title_size (integer or float)
text size of chart title

legend_size (integer or float)
text size of chart legend labels

tick_size (integer or float)
text size of x and y tick labels

label_size (integer or float)
text size of x and y descriptive labels

bright_bg (boolean)
use a custom color chart background

bright_bg_color (color value)
chart background color if bright_bg input is set to True

chart_style (string)
style for chart, valid inputs are any seaborn chart style

xsize, ysize (integer or float)
size of chart (width, height)

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:

‘SVg’, ‘png’

305

seniority_list Documentation, Release 0.68

matplotlib_charting.display_proposals()

print out a list of the proposal names which were generated and stored in the dill folder by
the build_program_files script

no inputs

matplotlib_charting.eg_attributes(ds, xmeasure, ymeasure, sdict, adict, cdict,
eg_list=None, mnum=None, ret_only=False,
ds_dict=None, attrl=None, operl=">=', vall=0,
attr2=None, oper2=">=', val2=0, attr3=None,
oper3=">=',val3=0, q_eglist_only=True,
xquant_lines=True, x_quantiles=10, xl_alpha=1,
xl_Is='dashed', xI_Iw=1, xl_color="7",
x_bands=True, xb_fc="3", xb_alpha=0.09,
yquant_lines=True, y_quantiles=10, yl_alpha=1,
yl_ls='dashed’, yl_lw=1, yl_color="7",
y_bands=True, yb_fc="#66fb3', yb_alpha=0.09,
linestyle="", linewidth=0, markersize=5,
marker_alpha=0.7, grid_alpha=0.25,
chart_style='"ticks', full_xpcnt=True,
full_ypcnt=True, xax_rotate=70, label_size=13,
qtick_size=12, tick_size=12, border_size=0.5,
legend_size=14, title_size=18, y_title_pos=1.12,
box_height=0.95, xsize=15, ysize=11,
image_dir=None, image_format="png")

Plot selected employee group(s) attribute data.
Chart x and y axes may be any dataset attributes, including date attributes.

Quantile membership for the x and/or y attribute may also be displayed. Membership may
be relative to the entire integrated population or only to the employee group(s) selected for
display (q_eglist_only input).

inputs

ds (dataframe)
dataset to examine, may be a dataframe variable or a string key from the ds_dict
dictionary object

xmeasure (string)
attribute to plot on x axis

ymeasure (string)
attribute to plot on y axis

sdict (dictionary)
program settings dictionary

306 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

adict (dictionary)
dataset column name description dictionary

cdict (dictionary)
program colors dictionary

eg_list (list)
list of employee groups to plot (integer codes)

mnum (integer)
month number for analysis

ret_only (boolean)
if True, mnum input is ignored and results are displayed for all employees at retire-
ment

ds_dict (dictionary)
output of the load_datasets function, dictionary. This keyword argument must be
set if a string key is used as the df input.

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate)
attr(n) limiting value (combined with oper(n)) as string

q_eglist_only (boolean)
if set to True:

if quantile bands are displayed, show membership based on selected em-
ployee groups (eg_list input).

if set to False:

if quantile bands are displayed, show membership based on the integrated
group population (all groups).

xquant_lines (boolean)
if True, show quantile membership for x axis attribute

x_quantiles (integer)
number of quantiles to display if xquant_lines input is True

xl_alpha (float)
transparency value of x axis quantile lines (0.0 to 1.0)

xI_Is (string)
x axis quantile lines linestyle (‘dashed’, ‘dotted’, etc.)

307

seniority_list Documentation, Release 0.68

x1_lw (integer or float)
x axis quantile lines line width

xl_color (string color value)
X axis quantile lines color

x_bands (boolean)
if True, show a background color within every other x axis quantile membership
area

xb_fc (string color value)
x axis quantile bands background color

xb_alpha (float)
x axis quantile bands color transparency value (0.0 to 1.0)

yquant_lines (boolean)
if True, show quantile membership for y axis attribute

y_quantiles (integer)
number of quantiles to display if yquant_lines input is True

yl_alpha (float)
transparency value of y axis quantile lines (0.0 to 1.0)

yl_Is (string)
y axis quantile lines linestyle (‘dashed’, ‘dotted’, etc.)

yl_lw (integer or float)
y axis quantile lines line width

yl_color (string color value)
y axis quantile lines color

y_bands (boolean)
if True, show a background color within every other y axis quantile membership
area

yb_fc (string color value)
y axis quantile bands background color

yb_alpha (float)
y axis quantile bands color transparency value (0.0 to 1.0)

markersize (integer or float)
size of chart scatter points

marker_alpha (integer or float)
transparency setting for plot lines or points (0.0 to 1.0)

grid_alpha (float)
transparency value for the chart grid corresponding to the x and y attribute values
(not the quantile membership lines)

308

Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

chart_style (string)
any valid seaborn chart style name

full_xpcnt (boolean)
if True, show full range percentage (0 to 100 percent) when a percentage attribute
is displayed on the x axis

full_ypcnt (boolean)
if True, show full range percentage (0 to 100 percent) when a percentage attribute
is displayed on the y axis

xax_rotate (integer)

rotation value (in degrees) for the x axis tick labels

qtick_size (integer or float)
text size of the quantile membership tick labels

tick_size (integer or float)
text size of the x and y attribute tick labels

label_size (integer or float)
text size of x and y axis labels

border_size (integer or float)
width of the chart border line (chart spines)

legend_size (integer or float)
text size of chart legend

title_size (integer or float)
text size of chart title

y_title_pos (float)
vertical position of the chart title when attribute filtering has been applied. (typical
values are 1.1 to 1.2)

box_height (float)
chart height multiplier which slightly shrinks vertical chart area for proper printing
(saving) purposes. This input does not affect the displayed values.

xsize, ysize (integer or float)
plot size in inches

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:

‘SVg” ‘png’

309

seniority_list Documentation, Release 0.68

matplotlib_charting.eg_boxplot (df _list, eg_list, eg_colors, job_clip, attr_dict,

measure='"spcnt’, ds_dict=None, attrl=None,
operl=">=', vall=0, attr2=None, oper2=">=', val2=0,
attr3=None, oper3=">=', val3=0, year_clip=2035,
exclude_fur=False, saturation=0.8, chart_style="dark’,
width=0.7, notch=True, show_whiskers=True,
show_xgrid=True, show_ygrid=True, grid_alpha=0.4,
grid_linestyle="solid', whisker=1.5, fliersize=1.0,
linewidth=0.75, suptitle_size=14, title_size=12,
tick_size=11, label_size=12, xsize=12, ysize=8,
image_dir=None, image_format="png")

create a box plot chart displaying ACTUAL attribute values (vs. differential values) from a

selected dataset(s) for selected employee group(s).

inputs

df_list (list)
list of datasets to compare, may be ds_dict (output of load_datasets function) string
keys or dataframe variable(s) or mixture of each

eg_list (list)
list of integers for employee groups to be included in analysis example: [1, 2, 3]

measure (string)
attribute for analysis

eg_colors (list)
list of colors for plotting the employee groups

attr_dict (dictionary)
dataset column name description dictionary

ds_dict (dictionary)
output from load_datasets function

job_clip (float)
if measure is jnum or jobp, limit max y axis range to this value

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate)
attr(n) limiting value (combined with oper(n)) as string

year_clip (integer)
only present results through this year

310 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

exclude_fur (boolean)
remove all employees from analysis who are furloughed within the data model at
any time (boolean)

chart_style (string)
chart styling (string), any valid seaborn chart style

width (float)
plotting width of boxplot or grouped boxplots for each year. a width of 1 leaves no
gap between groups

notch (boolean)
If True, show boxplots with a notch at median point

show_xgrid (boolean)
include vertical grid lines on chart

show_ygrid (boolean)
include horizontal grid lines on chart

grid_alpha (float)
opacity value for grid lines

grid_linestyle (string)
examples: ‘solid’, ‘dotted’, ‘dashed’

suptitle_size (integer or float)
text size of chart super title

title_size (integer or float)
text size of chart title

tick_size (integer or float)
text size of x and y tick labels

label_size (integer or float)
text size of x and y descriptive labels

xsize, ysize (integer or float)
width and hieght of plot in inches

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:

GSVg’, ‘png’

311

seniority_list Documentation, Release 0.68

matplotlib_charting.eg_diff_boxplot (df _list, dfb, eg_list, eg_colors, job_levels,

Jjob_diff_clip, attr_dict, measure='spcnt’,
comparison='baseline’, ds_dict=None,
attrl=None, operl=">=', vall=0, attr2=None,
oper2=">=', val2=0, attr3=None, oper3='>=",
val3=0, suptitle_size=14, title_size=12,
tick_size=11, label_size=12, year_clip=None,
exclude_fur=False, width=0.8, chart_style='dark’,
notch=True, linewidth=1.0, xsize=12, ysize=8,
image_dir=None, image_format="png")

create a DIFFERENTIAL box plot chart comparing a selected measure from computed inte-

grated dataset(s) vs. a baseline (likely standalone) dataset or with other integrated datasets.

inputs

df list (list)
list of datasets to compare, may be ds_dict (output of load_datasets function) string
keys or dataframe variable(s) or mixture of each

dfb (string or variable)
baseline dataset, accepts same input types as df_list above

eg_list (list)
list of integers for employee groups to be included in analysis example: [1, 2, 3]

eg_colors (list)
corresponding plot colors for eg_list input

job_levels (integer)
number of job levels in the data model (excluding furlough)

job_diff_clip (integer)
if measure is jnum or jobp, limit y axis range to +/- this value

attr_dict (dictionary)
dataset column name description dictionary

measure (string)
differential data to compare

comparison (string)
if ‘p2p’ (proposal to proposal), will compare proposals within the df_list to each
other, otherwise will compare proposals to the baseline dataset (dfb)

ds_dict (dictionary)
output from load_datasets function

attr(n) (string)
filter attribute or dataset column as string

312 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate)
attr(n) limiting value (combined with oper(n)) as string

suptitle_size (integer or float)
text size of chart super title

title_size (integer or float)
text size of chart title

tick_size (integer or float)
text size of x and y tick labels

label_size (integer or float)
text size of x and y descriptive labels

year_clip (integer)
only present results through this year if not None

exclude_fur (boolean)
remove all employees from analysis who are furloughed within the data model at
any time

use_eg_colors (boolean)
use case-specific employee group colors vs. default colors

width (float)
plotting width of boxplot or grouped boxplots for each year. a width of 1 leaves no
gap between groups

chart_style (string)
chart styling (string), any valid seaborn chart style

notch (boolean)
If True, show boxplots with a notch at median point vs. only a line

xsize, ysize (integer or float)
plot size in inches

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:

GSVg’, ‘png’

313

seniority_list Documentation, Release 0.68

matplotlib_charting.eg_multiplot_with_cat_order (df, mnum, measure, xax, job_strs,
job_level_colors, job_levels,
settings_dict, attr_dict, color_dict,
egs=[], ds_dict=None,
fur_color=None,
exclude_fur=False,
plot_scatter=True, s=20, a=0.7,
Iw=0, job_bands_alpha=0.3,
title_size=14, tick_size=12,
label_pad=110,
chart_style="whitegrid’,
remove_ax2_border=True,
lgd_h_adj=None, xsize=13,
ysize=10, image_dir=None,
image_format="png")

plot any dataset attributes as x or y values for comparison
when “cat_order” is selected as measure, show job category bands
inputs

df (dataframe)
pandas dataframe input

mnum (integer)
month number for analysis

measure (string)
dataframe column name (attribute for analysis)

xax (string)
X axis attribute

job_strs (list)
list of job descriptions for labels (normally sdict[‘job_strs’])

job_level_colors (list)
list of colors for job level zones (normally cdict[‘job_colors’])

Jjob_levels (integer)
number of job levels in model (sdict[‘num_of_job_levels’])

settings_dict (dictionary)
program job settings dictionary

attr_dict (dictionary)
program attribute name to attribute description dictionary

color_dict (dictionary)
color dictionary

314 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

egs (list)
list of employee groups for plotting

ds_dict (dictionary)
output from load_datasets function

fur_color (string color value)
if not None, color for furlough span color

exclude_fur (boolean)
if True, remove furloughed employees from input data

plot_scatter (boolean)
if True (default), plot a scatter chart, otherwise plot a line chart

s (integer or float)
size of scatter markers if a plot_scatter input is True

a (float)
transparency value for both line plots and scatter plots (0.0 to 1.0)

Iw (integer or float)
width of maker edge lines with a scatter plot

job_bands_alpha (float)
transparency value for job level color spans

title_size (integer or float)
text size of chart title

tick_size (integer or float)
text size of chart tick labels

label_pad (integer)
minimum padding between job description labels that would otherwise overlap

chart_style (string)
any seaborn plotting style name

remove_ax2_border (boolean)
if True, remove axis 2 (ax2) chart spines

xsize, ysize (integer or float)
width and height of chart

lgd_h_adj (float)
set to a small float value (for example: .02, -.01) to adjust the horizontal position
of the chart legend if required. Use negative values to move left, positive values to
move right

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

315

seniority_list Documentation, Release 0.68

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
[3 Svg” ‘png’
matplotlib_charting.emp_quick_glance(empkey, df, ds_dict=None, title_size=14,
tick_size=13, Iw=4, chart_style="dark’, xsize=8,

ysize=48, image_dir=None,
image_format="png")

view basic stats for selected employee and proposal
A separate chart is produced for each measure.
inputs

empkey (integer)
employee number (in data model)

df (dataframe)
dataset to study, will accept string proposal name

ds_dict (dictionary)
variable assigned to load_datasets function output

title_size (integer or float)
text size of chart title

tick_size (integer or font)
text size of chart tick labels

Iw (integer or float)
line width of plot lines

chart_style (string)
any valid seaborn charting style

xsize, ysize (integer or float)
size of chart display

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:

CSVg” ‘png,

316 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

matplotlib_charting. filter_ds(ds, attri=None, operl=None, vall=None, attr2=None,
oper2=None, val2=None, attr3=None, oper3=None,
val3=None, return_title_string=True)

Filter a dataset (dataframe) by attribute(s).

Filter process is ignored if attr(n) input is None. All attr, oper, and val inputs must be strings.
Up to 3 attribute filters may be combined.

Attr, oper, and val inputs are combined and then evaluated as expressions.
If return_title_string is set to True, returns tuple (ds, title_string), otherwise returns ds.
inputs

ds (dataframe)
the dataframe to filter

attr(n) (string)
an attribute (column) to filter. Example: ‘ldate’

oper(n) (string)
an operator to apply to the attr(n) input. Example: ‘<=’

val(n) (integer, float, date as string, string (as appropriate))
attr(n) limiting value (combined with oper(n)) as string

return_title_string (boolean)
If True, returns a string which dexcribes the filter(s) applied to the dataframe (ds)

matplotlib_charting.group_average_and_median(dfc, dfb, eg_list, eg_colors, measure,

job_levels, settings_dict, attr_dict,
ds_dict=None, attrI=None,
operl=">=' vall="0'", attr2=None,
oper2=">=' val2='0', attr3=None,
oper3=">=',val3="0',
plot_median=False,
plot_average=True,
compare_to_dfb=True,
use_filtered_results=True,
show_full_yscale=False,
job_labels=True, max_date=None,
chart_style='whitegrid', xsize=14,
ysize=8, image_dir=None,
image_format="png")

Plot group average and/or median for a selected attribute over time for compare and/or base

datasets. Standalone data may be used as compare or baseline data.

Results may be further filtered/sliced by up to 3 constraints, such as age, longevity, or job
level.

317

seniority_list Documentation, Release 0.68

This function can plot basic data such as average list percentage or could, for example, plot
the average job category rank for employees hired prior to a certain date who are over or under
a certain age, for a selected integrated dataset and/or standalone data (or for two integrated
datasets).

inputs

dfc (string or dataframe variable)
comparative dataset to examine, may be a dataframe variable or a string key from
the ds_dict dictionary object

dfb (string or dataframe variable)
baseline dataset to plot (likely use standalone dataset here for comparison, but may
plot and compare any dataset), may be a dataframe variable or a string key from
the ds_dict dictionary object

eg_list (list)
list of integers representing the employee groups to analyze (i.e. [1, 2])

eg_colors (list)
list of colors for plotting the employee groups

measure (string)
attribute (column) to compare, such as ‘spcnt’ or ‘jobp’

Jjob_levels (integer)
number of job levels in the data model

settings_dict (dictionary)
program settings dictionary generated by the build_program_files script

attr_dict (dictionary)
dataset column name description dictionary

ds_dict (dictionary)
dataset dictionary (variable assigned to the output of load_datasets function)

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate))
attr(n) limiting value (combined with oper(n)) as string

plot_meadian (boolean)
plot the median of the measure for each employee group

plot_average (boolean)
plot the average(mean) of the measure for each employee group

318

Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

compare_to_dfb (boolean)
plot average dfb[measure] data as dashed line. (likely show standalone data with
dfb, or reverse and show standalone as primary and integrated as dfb) (dfb refers
to baseline dataframe or dataset)

use_filtered_results (boolean)

if True, use the same employees from the filtered proposal list. For example, if
the dfc list is filtered by age only, the dfb list could be filtered by the same age
and return the same employees. However, if the dfc list is filtered by an attribute
which diverges from the dfb measurements for the same attribute, a different set of
employees could be returned. This option ensures that the same group of employees
from both the dfc (filtered first) list and the dfb list are compared. (dfc refers to the
comparison proposal, dfb refers to baseline)

show_full_yscale (boolean)
if measure input is one of these: ‘jnum’, ‘nbnf’, ‘jobp’, ‘fbfl’, if True, show all job
levels on chart. Otherwise, allow chart to autoscale with plotted data

job_labels (boolean)
if measure input is one of these: ‘jnum’, ‘nbnf’, ‘jobp’, ‘fbff’, use job text descrip-
tion labels vs. number labels on the y axis of the chart (boolean)

max_date (date string)
maximum chart date. If set to ‘None’, the maximum chart date will be the maxi-
mum date within the list data.

chart_style (string)
option to specify alternate seaborn chart style

xsize, ysize (integer or float)
x and y size of chart in inches

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:

‘Svg” Gpng’

319

seniority_list Documentation, Release 0.68

matplotlib_charting. job_count_bands (df _list, eg_list, job_colors, settings_dict,
ds_dict=None, emp_list=None, attrI=None,
operl=">=', vall=0, attr2=None, oper2=">=",
val2=0, attr3=None, oper3='>=', val3=0,
fur_color=None, show_grid=True,
max_date=None, plot_alpha=0.75,
legend_alpha=0.9, legend_xadj=1.3,
legend_yadj=1.0, legend_size=11, title_size=14,
tick_size=12, label_size=13,
chart_style='darkgrid', xsize=13, ysize=8,
image_dir=None, image_format="png")

area chart representing count of jobs available over time

This chart displays the future job opportunities for each employee group with various list
proposals.

This is not a comparative chart (for example, with standalone data), it is simply displaying
job count outcome over time. However, the results for the employee groups may be compared
and measured for equity.

Inputs

df_list (list)
list of datasets to compare, may be ds_dict (output of load_datasets function) string
keys or dataframe variable(s) or mixture of each

eg_list (list)
list of integers for employee groups to be included in analysis example: [1, 2, 3]

job_colors (list)
list of colors to represent job levels

settings_dict (dictionary)
program settings dictionary generated by the build_program_files script

ds_dict (dictionary)
output from load_datasets function

emp_list (list)
optional list of employee number(s) to plot (empkey attribute)

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate))
attr(n) limiting value (combined with oper(n)) as string

320 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

fur_color (color code in rgba, hex, or string style)
custom color to signify furloughed job level band (otherwise, last color in
job_colors input will be used)

max_date (date string)
only include data up to this date example input: ‘1997-12-31°

plot_alpha (float, 0.0 to 1.0)
alpha value (opacity) for area plot (job level bands)

legend_alpha (float, 0.0 to 1.0)
alpha value (opacity) for legend markers

legend_xadj, legend_yadj (floats)
adjustment input for legend horizontal and vertical placement

legend_size (integer or float)
text size of legend labels

title_size (integer or float)
text size of chart title

tick_size (integer or float)
text size of x and y tick labels

label_size (integer or float)
text size of x and y descriptive labels

chart_style (string)
chart styling (string), any valid seaborn chart style

xsize, ysize (integer or float)
plot size in inches (width and height)

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:

‘Svg” Gpng’

321

seniority_list Documentation, Release 0.68

matplotlib_charting.job_count_charts(dfc, dfb, settings_dict, eg_colors, eg_list=None,

ds_dict=None, attrlI=None, operl=">=", val1=0,
attr2=None, oper2=">=', val2=0, attr3=None,
oper3=">=', val3=0, plot_egs_sep=False,
plot_total=True, xax="date', year_max=None,
chart_style='"darkgrid', base_ls="-', prop_ls=":",
base_lw=1.6, prop_lw=2.5, suptitle_size=14,
title_size=12, total_color='"g’, xsize=3, ysize=4,
image_dir=None, image_format="png")

line-style charts displaying job category counts over time.

optionally display employee group results on separate charts or together

inputs

dfc (dataframe)
proposal (comparison) dataset to examine, may be a dataframe variable or a string
key from the ds_dict dictionary object

dfb (dataframe)
baseline dataset; proposal dataset is compared to this dataset, may be a dataframe
variable or a string key from the ds_dict dictionary object

settings_dict (dictionary)
program settings dictionary generated by the build_program_files script

eg_colors (list)
list of color values for plotting the employee groups, length is equal to the number
of employee groups in the data model

eg_list (list)
list of employee group codes to plot Example: [1, 2]

ds_dict (dictionary)
variable assigned to load_datasets function output

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate))
attr(n) limiting value (combined with oper(n)) as string

plot_egs_sep (boolean)
if True, plot each employee group job level counts separately

plot_total (boolean)
if True, include the combined job counts on chart(s)

322 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

xax (string)
X axis groupby attribute, options are ‘date’ or ‘mnum’, default is ‘date’

year_max (integer)
maximum year to include on chart Example: if input is 2030, chart would display
data from beginning of data model through 2030 (integer)

base_ls (string)
line style for base job count line(s)

prop_lIs (string)
line style for comparison (proposal) job count line(s)

base_lw (float)
line width for base job count line(s)

prop_lw (float)
line width for comparison (proposal) job count lines

suptitle_size (integer or float)
text size of chart super title

title_size (integer or float)
chart title(s) font size

total_color (color value)
color for combined job level count from all employee groups

xsize, ysize (integer or float)
size of chart display in inches (width and height)

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:

‘SVg” ‘png’

323

seniority_list Documentation, Release 0.68

matplotlib_charting. job_grouping_over_time (df, eg_list, jobs, job_colors, p_dict,

plt_kind="bar', ds_dict=None,
rets_only=True, attrI=None,
operl=">=', vall=0, attr2=None,
oper2=">=', val2=0, attr3=None,
oper3=">=', val3=0, time_group="'A',
display_yrs=40, legend_loc=4,
chart_style='darkgrid’, suptitle_size=14,
title_size=12, legend_size=13,
tick_size=11, label_size=13, xsize=12,
ysize=10, image_dir=None,
image_format="png")

Inverted bar chart display of job counts by group over time. Various filters may be applied to

study slices of the datasets.

The ‘rets_only’ option will display the count of employees retiring from each year grouped
by job level.

developer TODO: fix x axis scaling and labeling when quarterly (“Q’’) or monthly (“M”) time
group option selected.
inputs

df (dataframe)
dataset to examine, may be a dataframe variable or a string key from the ds_dict
dictionary object

eg_list (list)
list of unique employee group numbers within the proposal Example: [1, 2]

jobs (list)
list of job label strings (for plot legend)

job_colors (list)
list of colors to be used for plotting

p_dict (dictionary)
employee group to string description dictionary

plt_kind (string)
‘bar’ or ‘area’ (bar recommended)

ds_dict (dictionary)
output from load_datasets function

rets_only (boolean)
calculate for employees at retirement age only

attr(n) (string)
filter attribute or dataset column as string

324 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate)
attr(n) limiting value (combined with oper(n)) as string

time_group (string)
group counts/percentages by year (‘A’), quarter (‘Q’), or month (‘M”)

display_years (integer)
when using the bar chart type display, evenly scale the x axis to include the number
of years selected for all group charts

legend_loc (integer)
matplotlib legend location number code

219 |1
6|10
3,18 |4

suptitle_size (integer or float)
text size of chart super title

title_size (integer or float)
text size of chart title

legend_size (integer or float)
text size of chart legend labels

tick_size (integer or float)
text size of x and y tick labels

label_size (integer or float)
text size of x and y descriptive labels

xsize, ysize (integer or float)
size of each chart in inches (width, height)

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:

‘SVg,’ ‘png,

325

seniority_list Documentation, Release 0.68

matplotlib_charting.job_level_progression(df, emp_list, through_date, settings_dict,

color_dict, eg_colors, band_colors,
ds_dict=None, rank_metric='cat_order’,
chart_style="white’,
show_implementation_date=True,
job_bands_alpha=0.1,
max_plots_for_legend=35,
xgrid_alpha=0.65,
xgrid_linestyle='dotted', ygrid_alpha=0.5,
ygrid_linestyle='dotted', tick_size=13,
job_descr_size=12.5,
job_descr_pad=1135, label_size=15,
title_size=18, xsize=12, ysize=10,
image_dir=None, image_format="png")

show employee(s) career progression through job levels regardless of actual positioning

within integrated seniority list.

This x axis of this chart represents rank within job category. There is an underlying stacked
area chart representing job level bands, adjusted to reflect job count changes over time.

This chart reveals actual career path considering no bump no flush, special job assignment
rights/restrictions, and furlough/recall events.

Actual jobs held may not be correlated to jobs normally associated with a certain list percent-
age for many years due to job assignment factors.

inputs

df (dataframe)
dataset to examine, may be a dataframe variable or a string key from the ds_dict

dictionary object

emp_list (list)
list of empkeys to plot

through_date (date string)
string representation of y axis date limit, ex. 2025-12-31"

settings_dict (dictionary)
program settings dictionary generated by the build_program_files script

color_dict (dictionary)
dictionary containing color list string titles to lists of color values generated by the
build_program_files script

eg_colors (list)
colors to be used for employee line plots corresponding to employee group mem-
bership

326 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

band_colors (list)
list of colors to be used for stacked area chart which represent job level bands

ds_dict (dictionary)
output from load_datasets function

rank_metric (string)
column name for y axis chart ranking. Currently only ‘cat_order’ is valid.

chart_style (string)
any valid seaborn plotting chart style name

show_implementation_date (boolean)
plot a vertical dashed line at the implementation date

job_bands_alpha (float)
opacity level of background job bands stacked area chart

max_plots_for_legend (integer)
if number of plots more than this number, reduce plot linewidth and remove legend

xgrid_alpha, ygrid_alpha (float)
transparency value for grid. x and y axis may be set independently

xgrid_linestyle, ygrid_linestyle (string)
matplotlib line style for grid, such as “dotted” or “dashed”. x and y axis may be set
independently

job_descr_size (integer or float)
font size of job description text labels on right side of chart

job_descr_pad (integer)
padding to add between job description labels when they would otherwise overlap

tick_size (intger or float)
font size of tick labels

job_descr_size (integer or float)
font size of job description labels

label_size (integer or float)
font size of axis labels

title_size (integer or label)
font size of title

xsize, ysize (integer or float)
plot size in inches (width, height)

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

327

seniority_list Documentation, Release 0.68

image_format (string)

file extension string for a saved chart image if the image_dir input is not None

Examples:

‘Svg” ‘png’

matplotlib_charting. job_time_change (ds_list, ds_base, eg_list, job_colors, job_strs_dict,

job_levels, attr_dict, xax, ds_dict=None,
attrl=None, operl=">=', vall=0, attr2=None,
oper2=">=', val2=0, attr3=None, oper3='>=",
val3=0, marker="o', edgecolor="k’,
linewidth=0.05, size=25, alpha=0.95,
bg_color="#{{flff , x_max=1.02, limit_yax=False,
ylimit=40, zeroline_color="m’,
zeroline_width=1.5, pos_neg_face=True,
pos_neg_face_alpha=0.03,
legend_job_strings=True, legend_position=1.18,
legend_marker_size=130, suptitle_size=16,
title_size=14, tick_size=12,
chart_style="whitegrid’', label_size=13, xsize=12,
ysize=10, image_dir=None, image_format="'png’,
experimental=False)

Plots a scatter plot displaying monthly time in job differential, by proposal and employee
group. X axis percentage reflects first month within each comparative dataset, which will be
the same as standalone for all groups unless the data model implementation date occurs at

month zero.
inputs

ds_list (list)

list of datasets to compare, may be ds_dict (output of load_datasets function) string
keys or dataframe variable(s) or mixture of each

ds_base (string or variable)

baseline dataset, accepts same input types as ds_list above

eg_list (list)

list of integers for employee groups to be included in analysis example: [1, 2, 3]

job_levels (integer)

number of job levels in the data model

job_colors (list)

list of color values for job level plotting

job_strs_dict (dictionary)

dictionary of job code (integer) to job description label

328

Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

attr_dict (dictionary)
dataset column name description dictionary

xax (string)
list percentage attrubute, i.e. spcnt or Ispent

ds_dict (dictionary)
output from load_datasets function

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate))
attr(n) limiting value (combined with oper(n)) as string

job_colors (list)
list of color values for the job level plotting

job_strs_dict (dictionary)
job number to job label dictionary

marker (string)
scatter chart matplotlib marker type

edgecolor (color value)
matplotlib marker edge color

linewidth (integer or float)
matplotlib marker edge line size

size (integer or float)
size of markers

alpha (float)
marker alpha (transparency) value

bg_color (color value)
background color of chart if not None

x_max (integer or float)
high limit of chart x axis

limit_yax (integer or float)

if True, restrict plot y scale to this value may be used to prevent outliers from ex-

agerating chart scaling

ylimit (integer or float)
y axis limit if limit_yax is True

329

seniority_list Documentation, Release 0.68

zeroline_color (color value)
color for zeroline on chart

zeroline_width (integer or float)
width of zeroline

pos_neg_face (boolean)
if True, apply a light green tint to the chart area above the zero line, and a light red
tint below the line

legend_job_strings (boolean)
if True, use job description strings in legend vs. job numbers

legend_position (float)
controls the horizontal position of the legend

legend_marker_size (integer or float)
adjusts the size of the legend markers

suptitle_size (integer or float)
text size of chart super title

title_size (integer or float)
text size of chart title

tick_size (integer or float)
text size of chart tick labels

xsize, ysize (integer or float)
x and y size of each plot in inches

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
13 SVg” ‘png’
experimental (boolean)

show additional output under development consisting of a table, heatmap, and bar
chart

330 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

matplotlib_charting. job_transfer (dfc, dfb, eg, job_colors, job_levels, job_strs, p_dict,
ds_dict=None, gb_period="M', min_date=None,
max_date=None, tgt_jobs_list=None,
job_alpha=0.85, chart_style='whitegrid’,
fur_color=None, draw_face_color=False,
draw_grid=True, grid_alpha=0.2,
zero_line_color="m’, ytick_interval=None,
y_limit=None, title_size=14, legend_size=12,
xsize=14, ysize=9, image_dir=None,
image_format="png")

plot a differential stacked area chart displaying color-coded job transfer counts over time.
Output chart is actually 2 area charts (one for positive values and one for negative values)
displayed on a shared axis.

inputs

dfc (dataframe)
proposal (comparison) dataset to examine, may be a dataframe variable or a string
key from the ds_dict dictionary object

dfb (dataframe)
baseline dataset; proposal dataset is compared to this dataset, may be a dataframe
variable or a string key from the ds_dict dictionary object

eg (integer)
integer code for employee group

job_colors (list)
list of colors for job levels, may be value from color dictionary

job_levels (integer)
number of job levels in data model

job_strs (list)
list of job descriptions (labels)

p_dict (dictionary)
dictionary of employee number codes to verbose string description, (normally
“p_dict_verbose” from the settings dictionary)

Example:

{0: 'Standalone', 1: "Acme', 2: 'Southern'}

ds_dict (dictionary)
output from load_datasets function

gb_period (string)
group_by period. defaultis ‘M’ for monthly, other options are ‘Q’ for quarterly and

331

seniority_list Documentation, Release 0.68

‘A’ for annual

min_date (string date format)
if set, analyze job transfer data from this date forward

max_date (string date format)
if set, analyze job transfer data up to this date

tgt_jobs_list (list)
if not None, only plot job level(s) in this list

job_alpha (float)
chart alpha level for job transfer plotting (0.0 - 1.0)

chart_style (string)
seaborn plotting library style

fur_color (color code in rgba, hex, or string style)
custom color to signify furloughed employees (otherwise, last color in job_colors
input will be used)

draw_face_color (boolean)
apply a transparent background to the chart, red below zero and green above zero

draw_grid (boolean)
show major tick label grid lines

grid_alpha (float)
opacity setting for grid lines (0.0 - 1.0)

zero_line_color (color value)
color of the horizontal line a zero

ytick_interval (integer)
optional manual ytick spacing setting (function has auto-spacing built in)

y_limit (integer)
optional manual y axis chart limit (enter positive value only). This input may be
used to “lock” vertical scaling (shut off auto_scaling) for comparing gains and
losses between proposals and employee groups.

title_size (integer or float)
chart title text size

legend_size (integer or float)
chart legend text size

xsize (integer or float)
horizontal size of chart

ysize (integer or float)
vertical size of chart

332

Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
‘SVg’, cpng9
matplotlib_charting.kde_dist(df, color_list, p_dict, attribute="age', ds_dict=None,
mnum=0, title_size=14, x_min=None, x_max=None,

chart_style='darkgrid', xsize=12, ysize=10,
image_dir=None, image_format="png")

From the seaborn website: Fit and plot a univariate or bivariate kernel density estimate.
inputs

df (dataframe)
dataset to examine, may be a dataframe variable or a string key from the ds_dict
dictionary object

color_list (list)
list of colors for employee group plots

p_dict (dictionary)
eg to string dict for plot labels

attribute
dataset attribute to plot

ds_dict (dictionary)
output from load_datasets function

mnum (integer)
month number to analyze

title_size (integer or float)
text size of chart title

x_min (float)
X axis minimum limit (default None)

x_max (float)
X axis maximum limit (default None)

chart_style
seaborn chart style

xsize
chart height

333

seniority_list Documentation, Release 0.68

ysize
chart width

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
13 Svg” Gpng’
matplotlib_charting.make_color_list (num_of _colors=10, start=0.0, stop=1.0,
exclude=None, reverse=Fualse,
cm_name_list=["'Setl'], return_list=True,

return_dict=False, print_all_names=False,
palplot_cm_name=False, palplot_all=False)

Utility function to generate list(s) of colors (rgba format), any length and any from any section
of any matplotlib colormap.

The function can return a list of colors, a dictionary of colormaps to color lists, plot result(s)
as seaborn palplot(s), and print out the names of all of the colormaps available.

The end goal of this function is to provide customized color lists for plotting.
inputs

num_of_colors (integer)
number of colors to produce for the output color list(s), used within the
cm_subsection data calculation

start (float)
the starting point within the selected colormap to begin the spectrum color selection
(0.0 to 1.0), used within the cm_subsection data calculation

stop (float)
the ending point within the selected colormap to end the spectrum color selection
(0.0 to 1.0), used within the cm_subsection data calculation

exclude (list)
list of 2 floats representing a section of the colormap(s) to remove before calculating
the result list(s).

reverse (boolean)
reverse the color list order which reverses the color spectrum

cm_name_list (list)
any matplotlib colormap name(s)

334 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

return_list (boolean)
if True, return a list of rgba color codes for the cm_name_list colormap input only,
or (if the return_dict input is set to True) a dictionary of all colormap names to all
of the resultant corresponding calculated color lists using the cm_subsection data

return_dict (boolean)
if True (and return_list is True), return a dictionary of all colormap names to all of
the resultant corresponding calculated color lists

print_all_names (boolean)
if True (and return_list is False), print all the names of available matplotlib col-
ormaps

palplot_cm_name (boolean)
if True (and return_list is set to False), plot a seaborn palplot of the color list pro-
duced with the cm_name_list colormap input using the cm_subsection data

palplot_all (boolean)
if True (and return_list and palplot_cm_name are False), plot a seaborn palplot for
all of the color lists produced from all available matplotlib colormaps using the
cm_subsection data

matplotlib_charting.mark_quantiles(df, quantiles=10)

add a column to the input dataframe identifying quantile membership as integers (the column
is named “quantile”). The quantile membership (category) is calculated for each employee
group separately, based on the employee population in month zero.

The output dataframe permits attributes for employees within month zero quantile categories
to be be analyzed throughout all the months of the data model.

The number of quantiles to create within each employee group is selected by the “quantiles”
input.

The function utilizes numpy arrays and functions to compute the quantile assignments, and
pandas index data alignment feature to assign month zero quantile membership to the long-
form, multi-month output dataframe.

This function is used within the quantile_groupby function.
inputs

df (dataframe)
Any pandas dataframe containing an “eg” (employee group) column

quantiles (integer)
The number of quantiles to create.

example:

If the input is 10, the output dataframe will be a column of integers 1 - 10. The
count of each integer will be the same. The first quantile members will be marked

335

seniority_list Documentation, Release 0.68

with a 1, the second with 2, etc., through to the last quantile, 10.

matplotlib_charting.multiline_plot_by_emp (df, measure, xax, emp_list, job_levels,

ret_age, color_list, job_str_list, sdict,
attr_dict, ds_dict=None, plot_jobp=False,
show_implementation_date=True,
through_date=None, pcnt_ylimit=1.0,
chart_style='"ticks', linewidth=3,
line_alpha=0.7, grid_linestyle='dotted’,
grid_alpha=0.75, legend_size=14,
label_size=13, tick_size=13,
title_size=18, xsize=12, ysize=9,
image_dir=None, image_format="png")

select example individual employees and plot career measure from selected dataset attribute,

i.e. list percentage, career earnings, job level, etc.

inputs
df (dataframe)
dataset to examine, may be a dataframe or a string key with the ds_dict dictionary
object

measure (string)
dataset attribute to plot. Usually only one attribute to plot, but may be more than
one, such as ‘jnum’ and ‘jobp’
xax (string)
dataset attribute for x axis
emp_list (list)
list of employee numbers or ids

Jjob_levels (integer)
number of job levels in model

ret_age (float)
retirement age (example: 65.0)

color list (list)
list of colors for plotting

job_str_list (list)
list of string job descriptions corresponding to number of job levels

sdict (dictionary)
program settings dictionary

attr_dict (dictionary)
dataset column name description dictionary

336 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

ds_dict (dictionary)
output of the load_datasets function, dictionary. This keyword argument must be
set if a string key is used as the df input.

plot_jobp (boolean)
if measure input is ‘jnum’, also plot ‘jobp’ if set to True

show_implementation_date (boolean)
if True and “xax” input is “date”, plot a vertical line at the implementation date

chart_style (string)
any seaborn plotting style name

linewidth (integer or float)
width of chart solid lines

line_alpha (float)
transparency value of the plotted lines (0.0 to 1.0)

grid_linestyle (string)
matplotlib line style for grid, such as “dotted” or “solid”

grid_alpha
transparency value for grid (0.0 to 1.0)

legend_size (integer or float)
text size of chart legend

label_size (integer or float)
font size of x and y axis labels

tick_size (integer or float)
font size of chart tick labels

title_size (integer or float)
font size of chart title

xsize, ysize (integer or float)
plot size in inches

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
[3 svg9’ Gpng’
matplotlib_charting.numeric_test (value)

determine if a variable is numeric

337

seniority_list Documentation, Release 0.68

returns a boolean value
input

value
any variable

matplotlib_charting.parallel (df list, dfb, eg_list, measure, month_list, job_levels,

eg_colors, dict_settings, attr_dict, ds_dict=None,
attrl=None, operl=">=', vall=0, attr2=None,
oper2=">=',val2=0, attr3=None, oper3='>=', val3=0,
left=0, stride_list=None, chart_style="whitegrid’',
grid_color="7', suptitle_size=14, title_size=12,
facecolor="w', xsize=6, ysize=8, image_dir=None,
image_format="png")

Compare positional or value differences for various proposals with a baseline position or

value for selected months.

The vertical lines represent different proposed lists, in the order from the df_list list input.
inputs

df _list (list)
list of datasets to compare, may be ds_dict (output of load datasets function) string
keys or dataframe variable(s) or mixture of each

dfb (string or variable)
baseline dataset, accepts same input types as df_list above. The order of the list is
reflected in the chart x axis lables

eg_list (list)
list of employee group integer codes to compare example: [1, 2]

measure (string)
dataset attribute to compare

month_list (list)
list of month numbers for analysis. the function will plot comparative data from
each month listed

Jjob_levels (integer)
number of job levels in data model

eg_colors (list)
list of colors to represent the employee groups

dict_settings (dictionary)
program settings dictionary generated by the build_program_files script

attr_dict (dictionary)
dataset column name description dictionary

338 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

ds_dict (dictionary)
output from load_datasets function

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string
val(n) (string, integer, float, date as string as appropriate)
attr(n) limiting value (combined with oper(n)) as string
left (integer)
integer representing the list comparison to plot on left side of the chart(s). zero (0)

represents the standalone results and is the default. 1, 2, or 3 etc. represent the first,
second, third, etc. dataset results in df_list input order

stride_list (list)
optional list of dataframe strides for plotting every other nth result (must be same
length and correspond to eg_list)

grid_color (string)
string name for horizontal grid color

facecolor (color value)
chart background color

xsize, ysize (integer or float)
size of individual subplots (width, height)

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
‘svg’, ‘png’
matplotlib_charting.pct_format()
Apply “to_percent” custom format for chart tick labels
matplotlib_charting.percent_bins(eg, base, compare, measure="spcnt', by_year=True,

quantiles=20, time_col="date’,
agg_method="median")
Return a tuple of two dataframes containing differential percentage bin counts, one containing
positive counts and another containing negative counts.

This function first compares list percentage between two datasets on a grouped time period
basis (annual or monthly), then counts the number of employees within specified percentage

339

seniority_list Documentation, Release 0.68

gain or loss quantiles.

The counts are returned in dataframes with indexes reflecting the quantiles and columns rep-
resenting the grouped time period.

This function is used in the percent_diff_bins plotting function.
inputs

eg (integer)
employee group code

base (dataframe)
baseline dataframe (dataset) containing a list percentage column

compare (dataframe)
comparison dataframe (dataset) containing a list percentage column

measure (string)
dataset percentage attribute column (‘spcnt’ or ‘Ispent’)

by_year (boolean)
if True, group employee percentage differentials by year, otherwise by time_col
input

quantiles (integer)
number of quantiles to measure. An input of 20 would translate to quantiles of 5%
each (100 / 20).

time_col (string)
if by_year is False, group percentage differentials by this time unit. Inputs may be
“mnum” or “date”.

agg method (string)
quantile bin aggregation method. Inputs may be “mean” or “median”

matplotlib_charting.percent_diff_bins(compare, base, eg, measure="spcnt’, kind="bar’,
quantiles=40, num_display_colors=25,
area_xax='date', ds_dict=None, p_dict=None,
attrl=None, operl=">=', vall1=0, attr2=None,
oper2=">=',val2=0, attr3=None, oper3='>=",
val3=0, man_plotlim=None,
invert_barh=False, chart_style='"ticks’,
cmap_pos='"tab20c’', cmap_neg="tab20c’,
zero_line_color="m’', bright_bg=False,
bg_color="#ffffe6', title_size=14,
legend_size=12.5, xsize=16, ysize=10,
image_dir=None, image_format="'png")

Display employee group counts within differential list percentage bins over time.

Chart style options include bar, barh, and area.

340 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

Selectable inputs include the number of percentile bins, chart colors and the number of colors
in the color cycle representing the bins.

The analysis groups may be targeted by up to three attribute value filters.
inputs

compare (dataframe)
comparison dataframe (dateset)

base (dataframe)
baseline dataframe (dataset)

eg (integer)
employee group code

measure (string)
list percentage attribute for comparison (‘spent’ or ‘Ispent’)

kind (string)
chart style (‘bar’, ‘barh’, or ‘area’)

quantiles (integer)
the number of differential percentage bins. If the input is 40, each bin width will
be 2.5% (100 / 40)

num_display_colors (integer)
the number of distinct colors to create from the cmap inputs. If the input is less
than the number of bins found for display, the colors display will cycle or repeat as
necessary.

area_xax (string)
attribute to use for the chart when the kind input is set to ‘area’. Inputs may be
‘mnum’ or ‘date’.

ds_dict (dictionary)
variable assigned to the output of the load_datasets function. This keyword variable
must be set if string dictionary keys are used as inputs for the dfc and/or dfb inputs.

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate))
attr(n) limiting value (combined with oper(n)) as string

man_plotlim (integer)
if not None, restrict chart differential axis to this value. Otherwise, limit is set by
an algorithm.

341

seniority_list Documentation, Release 0.68

invert_barh (boolean)
If ‘kind’ input is set to ‘barh’, if True, invert the chart y axis

chart_style (string)
any valid seaborn plotting style name

cmap_pos (string)
any matplotlib colormap name representing colors to be applied to positive chart
values

cmap_neg (string)
any matplotlib colormap name representing colors to be applied to negative chart
values

zero_line_color (color value)
color to be applied to the chart zero line

bright_bg (boolean)
if True, color the chart background with the ‘bg_color’ color value

bg_color (color value)
color to use for the chart background if ‘bright_bg’ is True

title_size (integer or float)
text size for the chart title

legend_size (integer or float)
text size for the chart legend

xsize, ysize (integers or floats)
Width and height of chart in inches

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
‘svg’, ‘png’
matplotlib_charting.pprint_dict(dct, markerl="#', marker2="", skip_line=True)
print the key-value pairs in a horizontal, organized fashion.
inputs

dct (dictionary)
the dictionary to print

markerl, marker2
prefix and suffix for the dictionary key headers

342 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

matplotlib_charting.quantile_bands_over_time (df, eg, measure, bins=20,
ds_dict=None, year_clip=None,
kind='area', quantile_ticks=False,
cm_name="tab20c’,
chart_style='"ticks’,
quantile_alpha=0.75,
grid_alpha=0.4, custom_start=0.0,
custom_finish=1.0,
alt_bg_color=False,
bg_color="#faf6eb’, legend_size=13,
label_size=13, xsize=14, ysize=8,
image_dir=None,
image_format="png")

Visualize quantile distribution for an employee group over time for a selected proposal.

This chart answers the question of where the different employee groups will be positioned
within the seniority list for future months and years.

Note: this is not a comparative study. It is simply a presentation of resultant percentage
positioning.

The chart contains a background grid for reference and may display quantiles as integers or
percentages, using a bar or area type display, and includes several chart color options.

inputs

df (dataframe)
dataset to examine, may be a dataframe variable or a string key from the ds_dict
dictionary object

eg (integer)
employee group number

measure (string)
a list percentage input, either ‘spcnt’ or ‘Ispent’

bins (integer)
number of quantiles to calculate and display

ds_dict (dictionary)
output from load_datasets function

year_clip (integer)
maximum year to display on chart (requires ‘clip’ input to be True)

kind (string)
type of chart display, either ‘area’ or ‘bar’

quantile_ticks (boolean)

343

seniority_list Documentation, Release 0.68

if True, display integers along y axis and in legend representing quantiles. Other-
wise, present percentages.

cm_name (string)
colormap name (string), example: ‘Setl’

chart_style (string)
style for chart output, any valid seaborn plotting style name

quantile_alpha (float)
alpha (opacity setting) value for quantile plot

grid_alpha (float)
opacity setting for background grid

custom_start (float)
custom colormap start level (a section of a standard colormap may be used to create
a custom color mapping)

custom_finish (float)
custom colormap finish level

alt_bg_color (boolean)
if True, set the background chart color to the bg_color input value

bg_color (color value)
color for chart background if ‘alt_bg_color’ is True (string)

legend_size (integer or float)
text size for chart legend

label_size (intger or float)
text size for chart x and y axis labels

xsize, ysize (integer or float)
chart size inputs in inches (width, height)

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:

‘SVg” Gpng’

344 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

matplotlib_charting.quantile_groupby (dataset_list, eg_list, measure, quantiles,

eg_colors, band_colors, settings_dict, attr_dict,
Jjob_dict, groupby_method="median’, xax='"date’,
ds_dict=None, num_cat_order_yticks=10,
through_date=None, verbose_title=True,
plot_total=True, show_job_bands=True,
show_grid=True,
plot_implementation_date=True,
draw_reserve_levels=Fulse,
custom_color=False, cm_name="'Setl’,
start=0.0, stop=1.0, exclude=None,
reverse=False, chart_style="whitegrid',
remove_ax2_border=True, line_width=1,
use_dashed_line_compare=True,
bg_color="98', job_bands_alpha=0.15,
line_alpha=0.7, grid_alpha=0.3, title_size=14,
tick_size=12, label_size=13, label_pad=110,
xsize=12, ysize=10, image_dir=None,
image_format="png")

Plot representative values of a selected attribute measure for each employee group quantile

over time.

Multiple employee groups may be plotted at the same time. Job bands may be plotted
as a chart background to display job level progression when the measure input is set to
“cat_order”.

Two data models may be plotted and compared on the same chart. Only the first employee
group found within the eg_list input will be compared when plotting more than one dataset.

Example use case: plot the average job category rank of each employee quantile group, from
the start date though the life of the data model.

The quantile group attribute may be analyzed with any of the following methods:
[mean, median, first, last, min, max]

If the eg_list input list contains a single employee group code and the custom_color input is
set to “True”, the color of the plotted quantile result lines will be a spectrum of colors. The
following inputs are related to the custom color generation:

[cm_name, start, stop, exclude, reverse]

The above inputs will be used by the make_color_list function located within this module to
produce a list of colors with a length equal to the quantiles input. (Please see the docstring
for the make_color_list function for further explaination). If the quantiles input is set to a
relatively high value (100-200), the impact on the career profiles of the employee groups is
easily discernible when using a qualitative color map.

inputs

345

seniority_list Documentation, Release 0.68

dataset_list (dataframes)
A list of long-form dataframes, each of which contains “date” (and “mnum” if
xax input is set to “mnum”) and “eg” columns and at least one attribute column
for analysis. The normal input is a list of calculated datasets with many attribute
columns. The list may only hold one or two datasets.

eg_list (list)
List of eg (employee group) codes for analysis. The order of the employee codes
will determine the z-order of the plotted lines, last employee group plotted on top
of the others.

measure (string)
Attribute column name

quantiles (integer)
The number of quantiles to create and plot for each employee group in the eg_list
input.

eg_colors (list)
list of color values for plotting the employee groups

band_colors (list)
list of color values for plotting the background job level color bands when the using
a measure of ‘cat_order’ with the ‘show_job_bands’ variable set to True

settings_dict (dictionary)
program settings dictionary generated by the build_program_files script

attr_dict (dictionary)
dataset column name description dictionary

Jjob_dict (dictionary)
dictionary containing basic to enhanced job level conversion data. This is likely
the settings dictionary “jd” value.

groupby_method (string)
The method applied to the attribute data within each quantile. The allowable meth-
ods are listed in the description above. Default is ‘median’.

xax (string)
The first groupby level and x axis value for the analysis. This value defaults to
“date” which represents each month of the model. Alternatively, “mnum” may be
used.

ds_dict (dictionary)
A dictionary containing string to dataframes, used if df input is not a dataframe but
a string key (examples: ‘standalone’, ‘p1’)

num_cat_order_yticks (int)
approiximate number of y axis ticks to display on the lefthand side of the chart
when “cat_order” is selected as the “measure” input. The actual number of ticks

346

Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

displayed will be adjusted to match an optimal numerical interval between tick
values. This input does not have a linear relationship with the output and may
require a significant input change to affect the chart display.

through_date (date string)
If set as a date string, such as “2020-12-31’, only show results up to and including
this date.

verbose_title (boolean)
If True, chart title will use the long descriptions for each employee group from the
settings.xlsx input file, proposal_dictionary worksheet. Otherwise, the eg number
codes will be used in the title

plot_total (boolean)
If True, plot a dotted gray line representing the total count of active pilots over time
(only when “measure” input is set to “cat_order” and “show_job_bands” input is
True)

show_job_bands
If measure is set to “cat_order”, plot properly scaled job level color bands on chart
background

show_grid (boolean)
If True, plot a grid on the chart

plot_implementation_date
If True and the xax argument is set to “date”, plot a dashed vertical line at the
implementation date.

draw_reserve_levels (boolean)
If True and basic job levels have been selected via the settings.xIsx “scalars” work-
sheet, “enhanced jobs” setting, draw a horizontal red dashed line within each basic
job category level representing the upper limit of reserve status

custom_color (boolean)
If set to True, will permit a custom color spectrum to be produced for plotting a
single employee group “cat_order” result (color map is selected with the cm_name
input)

cm_name (string)
The colormap name to be used for the custom color option

start (float)
The starting point of the colormap to begin a custom color list generation (0.0 to
less than 1.0)

stop (float)
The ending point of the colormap to finish a custom color list generation (greater
than 0.0 to 1.0)

347

seniority_list Documentation, Release 0.68

exclude (list)
A list of 2 floats between 0.0 and 1.0 describing a section of the original colormap
to exclude from a custom color list generation. (Example [.45, .55], the middle of
the list excluded)

reverse (boolean)
If True, reverse the sequence of the custom color list

chart_style (string)
set the chart plot style for ax1 from the avialable seaborn plotting themes:

[“darkgrid”, “whitegrid”, “dark”, “white”, and “ticks”]
The default is “whitegrid”.

remove_ax2_border (boolean)
if “cat_order” is set as the measure input and the show_job_bands input is set True,
a second axis is generated to be the container for the job level labels. The chart
style for ax2 is “white” which avoids unwanted grid lines but includes a black solid
chart border by default. This ax2 border may be removed if this input is set to True.
(The border may be displayed if the chart_style input (for ax1) is set to “white” or
“ticks”).

line_width (float)
The width of the plotted lines. Default is .75

use_dashed_line_compare (boolean)
If True, when comparing output from 2 datasets, plot the second dataset output
with a dashed line, otherwise use a solid line

bg_color (color value)
The background color for the chart. May be a color name, color abreviation, hex
value, or decimal between 0 and 1 (shades of black)

job_bands_alpha (float)
If show_job_bands input is set to True and measure is set to “cat_order”, this input
controls the alpha or transparency of the background job level bands. (0.0 to 1.0)

line_alpha (float)
Transparency value of plotted lines (0.0 to 1.0)

grid_alpha (float)
Transparency value of grid lines (0.0 to 1.0)

title_size (integer or float)
Font size value for title

tick_size (integer or float)
Font size value for chart tick (value) labels

label_size (integer or float)
Font size value for x and y unit labels

348

Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

xsize, ysize (integers or floats)
Width and height of chart in inches

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
‘svg’, ‘png’

matplotlib_charting.quantile_years_in_position(dfc, dfb, job_levels, num_bins,
Jjob_str_list, p_dict, color_list,
style="bar', plot_differential=True,
ds_dict=None, attrI=None,
operl=">="', vall=0, attr2=None,
oper2=">=', val2=0, attr3=None,
oper3=">="', val3=0,
chart_style='darkgrid’,
grid_alpha=None,
custom_color=False,
cm_name='Dark2’', start=0.0,
stop=1.0, fur_color=None,
flip_x=False, flip_y=False,
rotate=False, gain_loss_bg=False,
bg_alpha=0.05,
normalize_yr_scale=False,
vear_clip=30, suptitle_size=14,
title_size=12, xsize=12, ysize=12,
image_dir=None,
image_format='png")

stacked bar or area chart presenting the time spent in the various job levels for quantiles of a
selected employee group.

inputs

dfc (string or dataframe variable)
text name of proposal (comparison) dataset to explore (ds_dict key) or dataframe

dfb (string or dataframe variable)
text name of baseline dataset to explore (ds_dict key) or dataframe

job_levels (integer)
the number of job levels in the model

num_bins (integer)

349

seniority_list Documentation, Release 0.68

the total number of segments (divisions of the population) to calculate and display

job_str_list (list)
a list of strings which correspond with the job levels, used for the chart legend
example: jobs = [‘Capt G4, ‘Capt G3’, ‘Capt G2’,]

p_dict (dictionary)
dictionary used to convert employee group numbers to text, used with chart title
text display

color_list (list)
a list of color codes for the job level color display

style (string)
option to select ‘area’ or ‘bar’ to determine the type of chart output. defaultis ‘bar’.

plot_differential (boolean)
if True, plot the difference between dfc and dfb values

ds_dict (dictionary)
variable assigned to the output of the load_datasets function. This keyword variable
must be set if string dictionary keys are used as inputs for the dfc and/or dfb inputs.

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate))
attr(n) limiting value (combined with oper(n)) as string

chart_style (string)
any valid seaborn plotting style name

custom_color, cm_name, start, stop (boolean, string, float, float)
if custom color is set to True, create a custom color map from the cm_name color
map style. A portion of the color map may be selected for customization using the
start and stop inputs.

fur_color (color code in rgba, hex, or string style)
custom color to signify furloughed employees (otherwise, last color in color_list
input will be used)

flip_x (boolean)
‘flip’ the chart horizontally if True

flip_y (boolean)
‘flip’ the chart vertically if True

rotate (boolean)
transpose the chart output

350

Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

gain_loss_bg (boolean)
if True, apply a green and red background to the chart in the gain and loss areas

bg_alpha (float)
the alpha of the gain_loss_bg (if selected)

normalize_yr_scale (boolean)
set all output charts to have the same x axis range

yr_clip (integer)
max x axis value (years) if normalize_yr_scale set True

suptitle_size (integer or float)
text size of chart super title

title_size (integer or float)
text size of chart title

xsize, ysize (integer or float)
size of chart display

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples: ‘svg’, ‘png’

matplotlib_charting.rows_of_color (df, mnum, measure_list, eg_colors, jnum_colors,

dict_settings, ds_dict=None, attrI=None,
operl=">="', vall=0, attr2=None, oper2='>=",
val2=0, attr3=None, oper3=">="', val3=0, cols=150,
eg_list=None, job_only=False, jnum=1,
shrink_to_fit=False, cell_border=True,
eg_border_color="2', job_border_color="2’",
chart_style="whitegrid', fur_color=None,
empty_color="#737373', suptitle_size=14,
title_size=12, legend_size=14, xsize=15, ysize=9,
image_dir=None, image_format="png")

plot a heatmap with the color of each rectangle representing an employee group, job level, or

status.

This chart will show a position snapshot indicating the distribution of employees within the
entire population, employees holding a certain job, or a combination of the two.

For example, all employees holding a certain job in month 36 may be plotted with original
group delineated by color. Or, all employees from one group may be shown with the different
jobs for that group displayed with different colors.

351

seniority_list Documentation, Release 0.68

Also will display any other category such as a special group such as furloughed employees.
Input dataframe must have a numerical representation of the selected measure, i.e. furloughed
indicated by a 1, and others with a 0.

inputs

df (dataframe)
dataset to examine, may be a dataframe variable or a string key from the ds_dict
dictionary object

mnum (integer)
month number of dataset to analyze

measure_list (list)
list form input, ‘categorical’ only such as employee group number or job number,
such as [‘jnum’], or [‘eg’] [‘eg’, ‘fur’] is also valid when highlighting furloughees

eg_colors (list)
colors to use for plotting the employee groups. the first color in the list is used for
the plot ‘background’ and is not an employee group color

jnum_colors (list)
job level plotting colors, list form

ds_dict (dictionary)
output from load_datasets function

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate))
attr(n) limiting value (combined with oper(n)) as string

cols (integer)
number of columns to construct for the heatmap plot

eg_list (list)
employee group integer code list (if used), example: [1, 2]

job_only (boolean)
if True, plot only employees holding the job level identified with the jnum input

jnum (integer)
job level distribution to plot if job_only input is True

shrink_to_fit (boolean)
if True, adjust the size of the heatmap to match the size of the filtered monthly data.
If False, maintain the number of cells in the heatmap to be equal to the starting size
of the employee population

352 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

cell_border (boolean)
if True, show a border around the heatmap cells

eg_border_color (color value)
color of cell border if measure_list includes ‘eg’ (employee group)

job_border_color (color value)
color of cell border when plotting job information

chart_style (string)
underlying chart style, any valid seaborn chart style (string)

fur_color (color code in rgba, hex, or string style)

custom color to signify furloughed employees (otherwise, last color in jnum_colors

input will be used)

empty_color (color value)
cell color for cells with no data

suptitle_size (integer or float)
text size of chart super title

title_size (integer or float)
text size of chart title

legend_size (integer or float)
text size of chart legend

xsize, ysize (integer or float)
size of chart in inches (width, height)

image_dir (string)

if not None, name of a directory in which to save an image of the chart output. If

the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
‘SVg” ‘png’
matplotlib_charting.single_emp_compare (emp, measure, df _list, xax, job_strs,
eg_colors, p_dict, job_levels, attr_dict,

ds_dict=None, chart_style="whitegrid',
standalone_color="#{fO0ff, title_size=14,

tick_size=12, label_size=13, legend_size=14,

xsize=12, ysize=8, image_dir=None,
image_format='png")

Select a single employee and compare proposal outcome using various calculated measures.

inputs

353

seniority_list Documentation, Release 0.68

emp (integer)
empkey for selected employee

measure (string)
calculated measure to compare examples: ‘jobp’ or ‘cpay’

df _list (list)
list of calculated datasets to compare

xax (string)
dataset column to set as x axis

job_strs (list)
string job description list

eg_colors (list)
list of colors to be assigned to line plots

p_dict (dictionary)
dictionary containing eg group integer to eg string descriptions

job_levels (integer)
number of jobs in the model

attr_dict (dictionary)
dataset column name description dictionary

ds_dict (dictionary)
output from load_datasets function

chart_style (string)
any valid seaborn plotting style

standalone_color (color value)
color of standalone plot (This function assumes one proposal from each group, any
additional proposal is assumed to be standalone)

title_size (integer or float)
text size of chart title

tick_size (integer or float)
text size of chart tick labels

label_size (integer or float)
text size of x and y axis chart labels

legend_size (integer or float)
text size of chart legend

xsize, ysize (integer or float)
width and height of output chart in inches

354

Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
‘SVg” ‘png’
matplotlib_charting.slice_ds_by_filtered_index(df, ds_dict=None, mnum=0,

attr='age', attr_oper=">=,
attr_val=50)

filter an entire dataframe by only selecting rows which match the filtered results from a target
month. In other words, zero in on a slice of data from a particular month, such as employees
holding a specific job in month 25. Then, using the index of those results, find only those
employees within the entire dataset as an input for further analysis within the program.

The output may be used as an input to a plotting function or for other analysis. This function
may also be used repeatedly with various filters, using output of one execution as input for
another execution.
inputs
df (dataframe, can be proposal string name)
the dataframe (dataset) to be filtered

ds_dict (dictionary)
A dictionary containing string to dataframes, used if ds_def input is not a dataframe

mnum (integer)
month number of the data to filter

attr (string)
attribute (column) to use during filter

oper (string)
operator to use, such as ‘<=’ or ‘!=’

attr_val (integer, float, date as string, string (as appropriate))
attr] limiting value (combined with oper) as string

Example filter:
joum >= 7 (in mnum month)

355

seniority_list Documentation, Release 0.68

matplotlib_charting.stripplot_dist_in_category(df, job_levels, full_time_pcnt,

eg_colors, band_colors, job_strs,
attr_dict, p_dict, ds_dict=None,
rank_metric='cat_order’,
mnum=None, attrI=None,
operl=">=',vall="0', attr2=None,
oper2=">=',val2="0'", attr3=None,
oper3=">=',val3="0’,
bg_alpha=0.12, fur_color=None,
show_part_time_Ilvl=True, size=3,
alpha=1, title_size=14,
label_pad=110, label_size=13,
tick_size=12, xsize=4, ysize=12,
image_dir=None,
image_format="png")

visually display employee group distribution concentration within accurately sized job bands

for a selected month.

This chart reveals how evenly or unevenly the employee groups share the jobs available within
each job category.
inputs

df (dataframe)
dataset to examine, may be a dataframe variable or a string key from the ds_dict
dictionary object

job_levels (integer)
number of job levels in the data model

full_time_pcnt (float)
percentage of each job level which is full time

eg_colors (list)
list of colors for eg plots

band_colors (list)
list of colors for background job band colors

job_strs (list)
list of job strings for job description labels

attr_dict (dictionary)
dataset column name description dictionary

p_dict (dictionary)
eg to group string label

ds_dict (dictionary)
output from load_datasets function

356 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

rank_metric (string)
rank attribute (currently only accepts ‘cat_order’)

mnum (integer)
month number - if not None, analyze data from this month

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate)
attr(n) limiting value (combined with oper(n)) as string

bg_alpha (float)
color alpha for background job level color

fur_color (color code in rgba, hex, or string style)
custom color to signify furloughed job band area (otherwise, last color from
band_colors list will be used)

show_part_time_lvl (boolean)
if True, draw a line within each job band representing the boundry between full
and part-time jobs when using a basic jobs only data model (set this input to False
when using an enhanced job data model)

size (integer or float)
size of density markers

alpha (float)
alpha of density markers (0.0 to 1.0)

title_size (integer or float)
text size of chart title

label_size (integer or float)
text size of x and y descriptive labels

tick_size (integer or float)
text size of x and y tick labels

xsize, ysize (integer or float)
width and height of chart in inches

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:

357

seniority_list Documentation, Release 0.68

‘svg’, ‘png’
matplotlib_charting.stripplot_eg_density(df, mnum, eg_colors, ds_dict=None,

mnum_order=True, attrl=None,
operl=">=', vall=0, attr2=None,
oper2=">=', val2=0, attr3=None,
oper3=">="', val3=0, dot_size=3,
chart_style="whitegrid', bg_color="white’,
title_size=12, suptitle_size=14, xsize=5,
ysize=10, image_dir=None,
image_format='png")

plot a stripplot showing density distribution for non-retired employees for each employee

group separately at the selected month. The stripplot displays remaining employees posi-

tioned according to the selected month or initial month integrated list order (controlled by

the “mnum_order” input).

Note: To analyze job category distribution density, use the “stripplot_dist_in_category” plot-
ting function.

The input dataframe (df) may be a dictionary key (string) or a pandas dataframe.
The input dataframe may be filtered by attributes using the attr(x), oper(x), and val(x) inputs.
inputs

df (string or dataframe)
text name of input proposal dataset, also will accept any dataframe variable (if a
sliced dataframe subset is desired, for example) Example: input can be ‘proposall’
(if that proposal exists, of course, or could be df[df.age > 50])

mnum (integer)
view data for employees remaining (not yet retired) within this data model month
number

eg_colors (list)
color codes for plotting each employee group

ds_dict (dictionary)
output from load_datasets function

mnum_order (boolean)
if True, plot list position in month selected with the “mnum” input, otherwise plot
according to initial integrated list position

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

358 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

val(n) (integer, float, date as string, string (as appropriate))
attr(n) limiting value (combined with oper(n)) as string

dot_size (integer or float)
size of stripplot markers

bg_color (color value)
chart background color

title_size (integer or float)
chart title text size

suptitle_size (integer or float)
chart text size of suptitle

xsize, ysize (integer or float)
size of chart width and height in inches

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:
‘SVg” ‘png’
matplotlib_charting.to_percent (decimal, position, precision=0)

Custom format for matplotlib axis as a percentage.
Ignores the passed in position variable. This has the effect of scaling the default tick locations.
inputs

decimal (axis values)
no user input

position
ignored

precision (integer)
number of decimals in output percentage labels

matplotlib_charting.violinplot_by_eg(df, measure, ret_age, cdict, attr_dict,
ds_dict=None, mnum=0, linewidth=1.5,
attrl=None, operl=">="', vall='0', attr2=None,
oper2='>=',val2="0'", attr3=None, oper3='>=",
val3="0'", scale="count’, saturation=1.0,
title_size=12, chart_style='darkgrid’, xsize=12,
ysize=10, image_dir=None,
image_format='png")

359

seniority_list Documentation, Release 0.68

From the seaborn website: Draw a combination of boxplot and kernel density estimate.

A violin plot plays a similar role as a box and whisker plot. It shows the distribution of quan-
titative data across several levels of one (or more) categorical variables such that those distri-
butions can be compared. Unlike a box plot, in which all of the plot components correspond
to actual datapoints, the violin plot features a kernel density estimation of the underlying
distribution.

inputs

df (dataframe)
dataset to examine, may be a dataframe variable or a string key from the ds_dict
dictionary object

measure (string)
attribute to plot

ret_age (float)
retirement age (example: 65.0)

cdict (dictionary)
color dictionary for plotting palatte

attr_dict (dictionary)
dataset column name description dictionary

ds_dict (dictionary)
output from load_datasets function

mnum (integer)
month number to analyze

linewidth (integer or float)
width of line surrounding each violin plot

attr(n) (string)
filter attribute or dataset column as string

oper(n) (string)
operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate)
attr(n) limiting value (combined with oper(n)) as string

scale (string)
From the seaborn website: The method used to scale the width of each violin. If
‘area’, each violin will have the same area. If ‘count’, the width of the violins will
be scaled by the number of observations in that bin. If ‘width’, each violin will
have the same width.

360 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.68

saturation (float)
Proportion of the original color saturation. Large patches often look better with
slightly desaturated colors, but set this to 1.0 if you want the plot colors to perfectly
match the input color spec.

title_size (integer or float)
text size of chart title

image_dir (string)
if not None, name of a directory in which to save an image of the chart output. If
the directory does not exist, it will be created.

image_format (string)
file extension string for a saved chart image if the image_dir input is not None

Examples:

‘Svg” ‘png,

361

seniority_list Documentation, Release 0.68

362 Chapter 14. matplotlib_charting module

CHAPTER
FIFTEEN

REPORTS MODULE

Create general statistical reports for all program datasets and present as charts and spreadsheets
within the reports folder.

reports.annual_charts(ds_dict, adict, cdict, plot_year_group=True, plot_job_group=True,
quantiles=10, plot_init_quarter=True, plot_running_quarter=True,
pent_ylim=0.75, cpay_stride=500, fixed_col_name='"eg_initQ’,
running_col_name='eg_runQ', figsize=None, date_grouper='ldate’,
chartstyle="ticks', verbose_status=True, tick_size=13,
legend_size=14, label_size=14, title_size=14,
adjust_chart_top=0.85)

Generates multiple charts representing general annual attribute statistics of all calculated
datasets for all employee groups FOR ALL ACTIVE EMPLOYEES (annual results for all
employees).

The user may select grouping analysis by any or all of the following:
1. longevity or date of hire year
2. job level
3. initial employee group list quantile membership
4. annual employee group list quantile membership

Stores the output as images in multiple folders within the reports/<case_name>/ann_charts
folder.

inputs

ds_dict (dictionary)
output of load_datasets function, a dictionary of datasets

adict (dictionary)
dataset column name description dictionary

cdict (dictionary)
program colors dictionary

363

seniority_list Documentation, Release 0.68

plot_year_group (boolean)
if True, create chart images grouped by the date_grouper input year

date_grouper (string)
column name representing a column of dates within a dataframe. Year membership
of this column will be used for grouping. Input is limited to ‘ldate’ or ‘doh’.

plot_job_group (boolean)
if True, create chart images grouped by job level held by employees

quantiles (integer)
the number of binning quantiles to measure for the initial and running (annually
updated) quantile membership analysis (default is 10)

plot_init_quarter (boolean)
if True, produce output grouped by initial list quantile membership, for each em-
ployee group

plot_running_quarter (boolean)
if True, produce output grouped by annual list quantile membership, for each em-
ployee group

pent_ylim (float)
output chart maximum y axis value for percentage attribute charts as a float, exam-
ple: .75 equals max displayed chart value of 75%

cpay_stride (integer)
y axis chart tick interval (in thousands) for charts displaying cpay (career pay)

fixed_col_name (string)
label to use for quantile number column when calculating using the initial quantile
membership for all results

running_col_name (string)
label to use for quantile number column when calculating using a continuously
updated quantile membership for all results

figsize (tuple)
optional size of all generated chart images. Default is None. This input will al-
low creation of larger chart images than the default small charts, at the price of an
increase in the time required to run the function.

date_grouper (string)
‘ldate’ or ‘doh’ date column grouping attribute used when plot_year_group input
is True

chartstyle (string)
any valid seaborn charting style (‘ticks’, ‘dark’, ‘white’, ‘darkgrid’, ‘whitegrid’),
defalut is ‘ticks’

364

Chapter 15. reports module

seniority_list Documentation, Release 0.68

verbose_status (boolean)
if True, print status of calculations as function is running

tick_size (integer or float)
text size of tick labels on the output chart images

legend_size (integer or float)
text size of the legend on the output chart images

label_size (integer or float)
text size of the x and y axis labels on the output chart images

title_size (integer or float)
text size of the title on the output chart images

adjust_chart_top (float)
input to permit adjustment of the top location of the generated charts - used to
ensure full chart title is captured by the save chart figure code. Defalt top position
is 1.0, default vaule for this input is .85 which “shrinks” the charts slightly vertically
so that the two-line chart titles are captured when saving the charts to file as images.

reports.job_diff_ to_excel (base_ds, compare_ds, ds_dict, add_cpay=True,
diff _color=True, row_color=True, lighten_factor=0.65,
neg_color="red', pos_color="blue’, zero_color="white’,
id_cols=["Ilname’, 'ldate’, 'retdate'])
Generates a spreadsheet which reports the differential number of months spent at each job
level between two outcome datasets. Results are reported for every employee.

The order of the employees shown will be the order from the “compare” dataset input.

The user may choose to apply formatting to the output spreadsheet. The generation of the
output with formatting is much slower than without, however.

Stores the output within the reports/<case_name>/by_employee folder.
inputs

base_ds (dataframe)
baseline dataset

compare_ds (dataframe)
comparison dataset

add_cpay (boolean)
if True, add a “cpay_diff”” column to show data model pay differential (compare vs.

base)

diff_color (boolean)
if True, use the neg_color, pos_color, and zero_color inputs to color the spreadsheet
job differential output

365

seniority_list Documentation, Release 0.68

row_color (boolean)
color spreadsheet rows by employee group if True. Color will be a tint (lighter
color version) of the colors used to represent the employee groups in chart output.

lighten_factor (float)
when the “row_color” input is True, this input controls the tint of the normal em-
ployee group colors to use for the cell background row coloring. The input is limited
from 0.0 to 1.0 and a higher value will make the coloring lighter.

neg_color, pos_color, zero_color (color values)
this input will determine the font colors to use for negative, positive, and zero job
differential values within the spreadsheet output. Inputs may by string hex values,
or rgb values within tuples or lists

id_cols (list)
list of columns to include within the spreadsheet output which are in addition to
the job level columns. This list (with the addition of the “order” column) will also
be colored according to employee group when the “row_color” input is set to True.

reports.retirement_charts(ds_dict, adict, cdict, plot_year_group=True,
date_grouper='"ldate', plot_job_group=True,
plot_init_quarter=True, plot_running_quarter=True,
quantiles=10, pcnt_ylim=0.75, cpay_stride=500,
fixed_col_name='eg_initQ’, running_col_name='eg_runQ’,
figsize=None, chartstyle='"ticks', verbose_status=True,
tick_size=13, legend_size=14, label_size=14, title_size=14,
adjust_chart_top=0.85)

Generates multiple charts representing general attribute statistics of all calculated datasets
for all employee groups AT RETIREMENT ONLY.

The user may select grouping analysis by any or all of the following:
1. longevity or date of hire year
2. job level
3. initial employee group list quantile membership
4. annual employee group list quantile membership

Stores the output as images in multiple folders within the reports/<case_name>/ret_charts
folder.

inputs

ds_dict (dictionary)
output of load_datasets function, a dictionary of datasets

adict (dictionary)
dataset column name description dictionary

366 Chapter 15. reports module

seniority_list Documentation, Release 0.68

cdict (dictionary)
program colors dictionary

plot_year_group (boolean)
if True, create chart images grouped by the date_grouper input year

date_grouper (string)
column name representing a column of dates within a dataframe. Year membership
of this column will be used for grouping. Input is limited to ‘ldate’ or ‘doh’.

plot_job_group (boolean)
if True, create chart images grouped by job level held by employees

quantiles (integer)
the number of binning quantiles to measure for the initial and running (annually
updated) quantile membership analysis (default is 10)

plot_init_quarter (boolean)
if True, produce output grouped by initial list quantile membership, for each em-
ployee group

plot_running_quarter (boolean)
if True, produce output grouped by annual list quantile membership, for each em-
ployee group

pent_ylim (float)
output chart maximum y axis value for percentage attribute charts as a float, exam-
ple: .75 equals max displayed chart value of 75%

cpay_stride (integer)
y axis chart tick interval (in thousands) for charts displaying cpay (career pay)

fixed_col_name (string)
label to use for quantile number column when calculating using the initial quantile
membership for all results

running_col_name (string)
label to use for quantile number column when calculating using a continuously
updated quantile membership for all results

figsize (tuple)
optional size of all generated chart images. Default is None. This input will al-
low creation of larger chart images than the default small charts, at the price of an
increase in the time required to run the function.

date_grouper (string)
‘ldate’ or ‘doh’ date column grouping attribute used when plot_year_group input
is True

chartstyle (string)
any valid seaborn charting style (‘ticks’, ‘dark’, ‘white’, ‘darkgrid’, ‘whitegrid’),

367

seniority_list Documentation, Release 0.68

defalut is ‘ticks’

verbose_status (boolean)
if True, print status of calculations as function is running

tick_size (integer or float)
text size of tick labels on the output chart images

legend_size (integer or float)
text size of the legend on the output chart images

label_size (integer or float)
text size of the x and y axis labels on the output chart images

title_size (integer or float)
text size of the title on the output chart images

adjust_chart_top (float)
input to permit adjustment of the top location of the generated charts - used to
ensure full chart title is captured by the save chart figure code. Defalt top position
is 1.0, default vaule for this input is .85 which “shrinks” the charts slightly vertically
so that the two-line chart titles are captured when saving the charts to file as images.

reports.stats_to_excel (ds_dict, quantiles=10, date_grouper='"ldate’',
fixed_col_name='eg_initQ’', running_col_name="eg_runQ")

Create a set of basic statistics for each calculated dataset and write the results as spreadsheets
within the reports folder.

There are 2 spreadsheets produced, one related to retirement data and the other related to
annual data.annual

The retirement information is grouped by employees retiring in future years, further grouped
for longevity or initial job.

The annual information is grouped by the model year, and further grouped by 10% quan-
tiles, by initial quantile membership and also by an annual quantile adjustment of remaining
employees.

inputs

ds_dict (dictionary)
output of load_datasets function, a dictionary of datasets

quantiles (integer)
the number of binning quantiles to measure for the initial and running (annually
updated) quantile membership analysis (default is 10)

date_grouper (string)
column name representing a column of dates within a dataframe. Year membership
of this column will be used for grouping. Input is limited to ‘ldate’ or ‘doh’.

368 Chapter 15. reports module

seniority_list Documentation, Release 0.68

fixed_col_name (string)
label to use for quantile number column when calculating using the initial quantile
membership for all results

running_col_name (string)
label to use for quantile number column when calculating using a continuously
updated quantile membership for all results

369

seniority_list Documentation, Release 0.68

370 Chapter 15. reports module

CHAPTER
SIXTEEN

CHANGE LOG

16.1 version history

16.1.1 0.68

September 29th, 2024
This update makes it easier to find potential issues with spreadsheet input data.

Duplicate indexes (employee ids, “empkeys”) will now be automatically found within
the master.xlsx and proposals.xlsx files. The problem areas will be presented to the
user for correction.

The compare_dataframes function within the list_builder was enhanced to improve
differences testing and issue reporting when comparing seperate master and proposal
spreadsheet lists.

Added 2 helper functions, index_dups_exist which allows for easy checking for dupli-
cates within a pandas dataframe, and index_duplicates which will return a dataframe
with rows from a dataframe which share duplicate index(es).

Introduce the usage of HTML display type for dataframes in the jupyter notebook out-
put.

16.1.2 0.67

September 14th, 2024

Added 2 functions, kde_dist which allows a distribution study on various inputs, and
a helper function, check_eg_input which will handle issues when a non-existent em-
ployee group input exists. The helper function was added throughout the code for many
matplotlib charting functions.

This update also fixed a minor issue with the quantile_groupby function, allowing a
hybrid list input.

371

seniority_list Documentation, Release 0.68

Minor chart axis lable and title improvements.

16.1.3 0.66

September 5th, 2024

This update improves the program code in a few areas and corrects several bugs which
could arise under certain circumstances. This update relies on the supporting package
versions from the previous update in 2020 as is now described within the installation
section of the program documentation. Proper operation of the program now requires
that a virtual environment be created with specific package versions. An update is
planned to the code base so that the newest versions of all the required packages may
be used to run the program in the future.

» improved the code which stores and reads the case value using pickle

* allow any user input value as the year_code input on the “pay_exceptions” work-
sheet within the settings.xlsx file, avoiding an exception

* anon_master function no longer requires a specific worksheet name for the work-
sheet containing the master list

* corrected maximun month value within interactive_plotting.py to avoid an ex-
ception when the slider widget is moved to the highest value

* modified join_inactives.py to allow for the case where employees who will retire
before the model start date to exist within the master list.

* add code to plotting functions to ignore (with a message) employee group input
variables for groups which are not included in the current data model

* add color formatting to the “cpay_diff”’ column within the spreadsheet created by
the job_diff _to_excel function

16.1.4 0.65

May 12th, 2020

This version updates seniority_list to be compatible with changes in some of the sup-
porting Python data science packages which have reached 1.0 release status since this
program was developed.

 update requirements.txt

* modify the update_stripplot function within editior_function.py to restore cor-
rect display of the scatter density plot within the EDITOR_TOOL.ipynb note-
book

* modify the layout parameters for the editor tool due to changes within bokeh

372 Chapter 16. change log

seniority_list Documentation, Release 0.68

slight change to the align_next function for changes within the numba package
and rewrite docstring

update job_count_charts plotting function to be compatible with how matplotlib
handles empty groupby groups

update eg_attributes plotting function to allow for new matplotlib datetime axis
handling

update bk_basic_interactive interactive plotting function due to different way that
widgets are defined with bokeh since 1.0

16.1.5 0.64

March 1st, 2020

Minor update to fix broken links in documentation.

16.1.6 0.63

October 8th, 2018

This version adds functionality within many of the scripts and plotting functions, up-
dates the plotting functions for compatibility with matplotlib 3.0, adjusts the editor tool
code for compatibility with the bokeh plotting library, and corrects a few bugs.

Script and non-plotting functions updates:

modify build_program_files.py script to allow edited list order from propos-
als.xlsx to be constructed properly with a “new_order” column vs an “idx” col-
umn

modify compute_measures.py script to accept edited proposal orderings from
proposals.xlsx

update reports.py script functions retirement_charts and annual_charts to be
compatible with matplotlib 2.2 (this prevents the previous behavior of automatic
plotting of the final calculated charts within jupyter notebook)

corrected bug in build_program_files.py script when using basic jobs (non-
enhanced)

update comment cells in RUN_SCRIPTS.ipynb notebook

update the anon_master and anon_pay_table functions (in the functions module)
to use the “sheet_name” keyword parameter with pandas read_excel functions.
this is due to a revision within pandas

add docstring to hex_dict function

16.1. version history

373

seniority_list Documentation, Release 0.68

* remove ipywidgets from program requirements
Plotting function updates:

* improve quantile_groupby plotting function. Now two datasets may be compared
for the same employee group. Update STATIC_PLOTTING.ipynb notebook
with correct variable inputs and new plotting example. Add chart example to
documentation gallery.

 update stripplot_eg_density plotting function (removed “attr_dict” input and im-
proved chart title labels)

» update quantile_groupby plotting function (add “verbose_title option, add
“plot_total” option, correct bug when “through_date” input was greater than max-
imum data model date)

* update job_transfer plotting function so that title shows verbose employee group
name instead of an employee group code number

* update stripplot_eg_density plotting function to permit display of list order rela-
tive to selected month order or initial integrated list order and also improve the
chart labels

* enhance title display in the quantile_years_in_position plotting function

* add code to handle situation when filtering results are an empty dataset in the
differential_scatter plotting function

* update quantile_groupby plotting function to include auto-yscale tick spacing
when “cat_order” is selected for the “measure” input. This prevents the plotting
library from picking random tick spacing.

Editor tool updates:

* update animate function callbacks within the editor_function to align with change
in bokeh api version 0.12.16+

* adjust height of bokeh textinput widget within the editor_function.py module
to less than optimal height to maintain usability. The bokeh textinput widget is
missing functionality for proper sizing. When the functionality is implemented,
the txt_height variable will be readjusted.

* remove the global variable from callbacks within the editor_function and the
bk_basic_interactive function and replace with a new class object

 update editor tool layout spacers

* refactor editor tool periodic_callback code for compatibiltiy with bokeh update

374 Chapter 16. change log

seniority_list Documentation, Release 0.68

16.1.7 0.62

April 18th, 2018

This a minor update with changes for compatibility with matplotlib 2.2 and minor code
tweaks to allow a wider range of user scenarios.

* change references to “Vega20c” matplotlib colormap to “tab20c”

* change matplotlib tick parameters from “on” and “off”” to “True” and “False”

¢ add ax.margins(x=0) to plotting code where needed

* update build_program_files.py to allow cases without any furloughed employees

* update contract_year_and_raise function to allow compenstation data without
any pay exceptions

* update distribute function

* update group_average_and_median plotting function to permit proper plotting
when default job level scaling interval is less than one

16.1.8 0.61

February 26th, 2018

This update refactored the job assignment routine used when a ratio condition is ap-
plied, added a time in job differential study to the reports module, and applied miscel-
laneous code and docstring cleanup.

Users may elect to capture an existing job distribution ratio (between the employee
groups) to be applied during the effective condition time period for both capped and
unrestricted ratio job assignment. The input spreadsheet settings.xlsx ‘“ratio cond”
and “ratio_cond_capped_count” worksheets now contain an additional column (“snap-
shot™) for selecting this option. The “excel input files” section of the documentation
has been updated. Code changes related to the new ratio job assignment routine:

* update set_snapshot_weights function

* update assign_cond_ratio function

* update distribute function

* remove assign_cond_ratio_capped function
* add eg_quotas function

 update build_program_files script

* update converter script

* refactor remove_zero_groups function

16.1. version history 375

seniority_list Documentation, Release 0.68

This version adds to the built-in reporting capability of seniority_list with the new
Job_diff _to_excel function. The function will calculate the time difference (in months)
each employee would spend in each job level between data models. The results are
presented as a formatted spreadsheet stored within the reports folder. The hex_dict
function was added to support the formatting requirements for the spreadsheet output.

The NumPy “inld” function has been replaced with the NumPy “isin” function
throughout as recommended by NumPy'??,

Hard code used during development was removed/updated within the violinplot_by_eg
and the eg_multiplot_with_cat_order functions.

Some formatting of function docstrings was updated to improve the output format of
the web and pdf documentation.

16.1.9 0.60

January 12th, 2018

The documentation has now been updated for the new editor tool and the old version
of the editor has been removed.

A new interactive_plotting.py module has been added to the program, along with a
companion INTERACTIVE_PLOTTING.ipynb notebook file. Only one interactive
chart is included at this point.

Revision highlights include:

* the editor zone delineation for each chart area has been changed from a bokeh rect
glyph to a box annotation. The vertical spread of the zone will now alway extend
to the limits of the chart areas

¢ a correction was made to the edit zone cursor line conversion calculation when
using a “running” xtype X axis

* the “proposal” dropdown selection on the “proposal_save” panel will now auto-
matically change to “edit” when a squeeze is performed

* added styling control for the edit zone

¢ added code to handle data model months with no data when extra filters have been
applied

¢ renamed the PLOTTING notebook to STATIC_PLOTTING to accomodate the
new INTERACTIVE_PLOTTING notebook

122 https://docs.scipy.org/doc/numpy/reference/ generated/numpy.in1d.html

376 Chapter 16. change log

https://docs.scipy.org/doc/numpy/reference/generated/numpy.in1d.html

seniority_list Documentation, Release 0.68

16.1.10 0.59

December 23rd, 2017

The editor tool has been completely rewritten and is now implemented as a local web
server application within the notebook using the Bokeh plotting library. This first re-
lease version is now included with the program but is not yet supported with documen-
tation. A revised user guide will be forthcoming soon. The documentation related to
the editor tool will be incrementally revised over the next several weeks. Much of the
current documention can be applied to the new tool.

Other improvements with this revision include:
* updated assign_standalone_job_changes function

* fixed old editor tool display functionality following ipywidgets update, though
performance when using the cursor sliders is less than ideal

 changed all pandas “read_excel” parameters from “sheetname” to “sheet_name”
for compatibility with future versions of pandas

* added editor_dict to the build_program_files.py script which provides initial val-
ues for the new editor tool display and will store editor tool values during and
between sessions

* added convert_to_hex function which converts rgba values (such as those pro-
duced by the make_color_list function) to string hex color values

* added the find_nearest and cross_val functions for use with the editor tool p1 and
p2 cursor equivalent position feature (pl and p2 are the bokeh chart figures)

16.1.11 0.58

September 25th, 2017

This update includes coding updates which improve the computational efficiency of the
program, resulting in a 10-15% reduction in the time required to compute a dataset.

* General changes were made through entire code base to increase computational
speed wherever possible:

numpy.arange() to range()

numpy.sum(<condition>) to numpy.count_nonzero(<condition>)

numpy.array(dataframe_column) to dataframe_column.values

max(array) to array.max()

* Applied fast numba jit (just in time compiling) to the following refactored func-
tions:

16.1. version history 377

seniority_list Documentation, Release 0.68

— align_next
— mark_fur_range

* Replaced standard numpy expressions used for job counting and job count column
assignment with two new numba-optimized functions:

— count_avail_jobs
— assign_job_counts*

* Improved the performance of the following functions through the use of line pro-
filing and refactoring:

career_months

convert_to_datetime

count_per_month

gen_skel_emp_idx

age_correction

* Updated the standalone.py script to use the create_snum_and_spcnt_arrays
function for faster generation of the snum, spcnt, Inum, and Iscpnt columns.

Other improvements were made to the program which are not related to reducing com-
putation time:

* Added the find_squeeze_vals function and incorporated it within the editor tool.
The new function permits editor squeezing (a visual exercise based on displayed
data) when future month data is displayed to the user. Future month cursor line
postion is converted to the equivalent original list positions for use within the
squeeze algorithm.

* Added an experimental section to the job_time_change plotting function. The
PLOTTING notebook was updated accordingly.

* Removed the no longer used “orig” output from assign_jobs_nbnf_job_changes
function.

* Changed code reference from “qtr” to the semantically correct “qntl” for use
within the summary reports charts output.

* Restored “full_flush” job assignement functionality with updates to the as-
sign_jobs_full_flush_job_changes function.

* Added a sort routine to the eg_count settings dictionary value creation routine
within the build_program_files script to ensure continuity with other program
calculations.

* Removed functions which have been superceded and are no longer used:

— snum_and_spcnt

378 Chapter 16. change log

seniority_list Documentation, Release 0.68

16.1.12

— create_snum_array

0.57

August 23rd, 2017

This update includes a major editor tool upgrade.

16.1.13

added editor tool absolute value display

Previously, only a differential comparison of attribute values between a
baseline and comparative dataset was possible. Now the actual values,
initially from the comparative and then the edited dataset (after the first
edit), may be displayed. This option allows the user to directly analyze
the distribution of equity and opportunity within the merged operation
of integration proposals.

added editor tool additional display filtering

The user may now show only results for targeted subsets of the merged
population, allowing rapid analysis of certain list attribute cohorts. For
example, this feature permits additional outcome evaluation for employ-
ees who may have limited years remaining in their careers or employees
belonging to a special job assignment category.

extensive updates to the editor tool documentation and the editor tool function
docstring

updeated EDITOR_TOOL notebook to incorporate the new editor tool function-
ality

added find_index_val function to functions module
improved excel input file documentation

— added sections on job level hierarchy and the “hours” worksheet preparation,
both within the “pay_tables.xlsx format guide”.

0.56

June 21st, 2017

editor tool stylistic update

— replaced the independent “junior” and “senior” slider controls with a single,
easier to use range selector slider tool

— increased the width of the sliders for easy value selection

16.1. version history

379

seniority_list Documentation, Release 0.68

— applied a “flex” sizing method to the controls which allows the tool to auto-
adjust the width of the controls to match the available screen size

— various other styling added

16.1.14 0.55

May 23rd, 2017
* new dataset reports capability

This update includes a new reports module. General statistics may be
generated quickly for all calculated datasets, providing a broad overview
of how each proposed integrated list will affect employees from each
work group. This process provides useful absolute and comparative in-
formation for targeted attributes. The statistics are converted to excel
spreadsheets and chart images, stored within the reports folder.

Data is produced for the targeted metrics both at retirement and on an
annual basis.

The charts are smaller and of lower image quality than the charts pro-
duced by the dedicated plotting functions included with seniority_list.
This is done to reduce the time required to generate the hundreds of
charts in the output. If the user desires better quality charts for the gen-
eral overview charts, a larger chart size may be designated through a
function input.

* added a new “quick report” section to the documentation covering the new re-
porting capability

* added a new example REPORTS notebook to the program. This notebook pro-
vides code examples for the new reporting capability and will generate summary
spreadsheets and chart images for the current case study when it is executed.

 updated the ds_dictionary creation routine - output is now dataset name/dataset
key-value pair vs. the previous dataset name/(dataset, dataset name) tuple dictio-
nary values.

380 Chapter 16. change log

seniority_list Documentation, Release 0.68

16.1.15 0.54

May 13th, 2017

* combined career_months_df_in and career_months_list_in into one function, ca-
reer_months

e add convert_to_datetime function

* add pcnt_format function and update plotting code to incorporate the change
* improve code relating to saving chart images

* consolidate “imp_date” and “implementation_date” references

* update the code that groups data according to “empkey” attribute due to a version
change in the pandas library

* update pandas “parallel coordinates” import due to a version change in the pandas
library

* add the eg_attributes plotting function. This function replaces the multi-
line_plot_by_eg plotting function. This new function is able to plot any attribute
(including date attributes) on either the x or y axis and introduces quantile mem-
bership lines and bands.

* remove multiline_plot_by_eg plotting function and eval_strings function

* docstring updates throughout

16.1.16 0.53

April 30th, 2017
Improvements with charts, plotting:

 updated the multiline_plot_by_eg, multiline_plot_by_emp,
job_level_progression, and quantile_years_in_position plotting functions

* numerous updates and improvements to chart styling control for many plotting
functions

Expanded pay exception capability:

* refactor contract_year_and_raise fuction to permit any number of pay exception
periods

* add new “pay_exceptions”” worksheet in the settings.xlsx input file
* update make_skeleton.py script to use the new pay_exceptions method

New anonymizing functions:

16.1. version history 381

seniority_list Documentation, Release 0.68

* added capability to anonymize input data with the following new functions:

anon_names

anon_empkeys

anon_dates

anon_pay

Each of the above functions generates random substitute data for the related input data
column. These “helper” functions were combined into the following functions which
can anonymize the master.xlsx and pay_tables.xlsx files all at once, inplace.

* anon_master
* anon_pay_table
New sampling ability:

* added the sample_dataframe function, which returns a random sample of a
dataframe (by rows), with the quantity of rows selected by the user

New excel-related functions:
* update_excel
* copy_excel_file
pdf documentation
* added downloadable pdf version of the program documentation
* formatted function definitions for proper presentation within the pdf document

Program coding improvement:

113 99,99

* added “if __name__ ==“__main__"":” execution protection to all scripts

There were some older developemental files and references to settings remaining within
the code base that were not needed any longer.

» removed several developemental functions
* remove several items from the settings dictionary

* remove several rows from the “scalars” worksheet within the settings.xlsx file

382 Chapter 16. change log

seniority_list Documentation, Release 0.68

16.1.17

0.52

April 19th, 2017

This update version focused on updating the visualization capabilities of seniority_list.

refactor job_transfer plotting function for speed and added features

updated function is approximately 25 times faster

added ability to plot only targeted job level(s)

new y scale limit option

new min and max date options

add new percent_bins function and corresponding percent_diff_bins plotting
function

— plots count of employees in list percentile change bins over time
add new cohort_differential plotting function

— analyze differences between list locations for employees with equivalent at-
tribute values but from different groups

add code to all notebooks for an automatic wide display

update multiline_plot_by_emp plotting function to permit simultaneous display
of “jnum” and “jobp” attributes

update multiline_plot_by_eg plotting function to permit plotting of values at re-
tirement for all employees

add ability to plot individual employee progression lines with job_count_bands
plotting function

update all plotting function code to matplotlib object-oriented style

update many plotting function chart legend generation routines

add capability to save charts as images (including SVG format)

update PLOTTING notebook to incorporate new plotting functions/features

update documentation

16.1. version history

383

seniority_list Documentation, Release 0.68

16.1.18 0.51

April 1Ist, 2017
* remove “‘example_chart” option from plotting functions
* add exception types to most try/except blocks throughout program
* remove “master_name” argument from join_inactives.py script
 update join_inactives.py script to permit input from editor tool output list order
* update assign_jobs_nbnf_job_changes function:

— reduce the number of arguments for the main integrated job assignment func-
tion

— add job table dictionary to the function arguments
— eliminate the “this_job_col” variable within monthly loop

* reduce and simplify the arguments for the assign_standalone_job_changes func-
tion, and use settings dictionary and job table dictionary as arguments

* add the add_zero_col function to the functions module. This function will add a
column of zeros as the first column of a 2D numpy array

* move the code to generate the dict_job_tables.pkl dictionary file from the
make_skeleton.py script to the build_program_files.py script for consistency
with other generated files

* add a section within the build_program_files.py script to create a loop_check
array. This boolean array will prevent unnecessary looping during the job assign-
ment routine when all remaining employees have already been assigned. Reduces
“Sample3” dataset generation times by approximately 5%.

» update RUN_SCRIPTS and PLOTTING notebooks

* update documentation

16.1.19 0.50

March 20th, 2017

This update improved the flexibility of the ratio-based conditional job assignment rou-
tines. Inputs for these routines are now designated on individual worksheets within the
settings.xlsx input file. Conditions may include any combination of jobs, weightings,
and employee groupings.

* refactor build_program_files.py script:

— change ranges relating to month time spans to sets vs ranges

384 Chapter 16. change log

seniority_list Documentation, Release 0.68

— remove references to condition durations, month ranges as sets have replaced
these inputs

— add new dictionary generation routine used with input from the ratio_cond
worksheet in settings.xlsx.

— remove code related to count_cond, ratio_cond, and quota_dict.

* update converter.py to handle the basic to enhanced conversion of new ratio-
condition related dictionaries and remove code no longer needed.

* eliminate many arguments for the assign_jobs_nbnf_job_changes function and
replace with a settings dictionary argument.

* refactor variable preparation sections within the assign_jobs_nbnf_job_changes
function for use with the new dictionaries and month sets loaded from the settings
dictionary when ratio-based conditions are selected.

* refactor the assign_cond_ratio_capped and assign_cond_ratio job assignment
functions. The new functions are simpler and more flexible in terms of inputs.
Both functions accept a new dictionary argument, built from input worksheets
which have been reformatted.

* refactor the set_ratio_cond_dict function and rename it as set_snapshot_weights.
The function modifies the weightings within the ratio_dict dictionary for all jobs
at once to match existing job counts for a target month.

e add a “cap” argument to the distribute function. The cap argument allows the
function to be used within a ratio count-capped conditional job assignment rou-
tine.

* modify the distribute_vacancies_by_weights function for simplicity and preci-
sion. This function is no longer used and may be removed at a future date.

* the quota_dict and count_ratio_condition worksheets were removed from the
settings.xlsx input file. These worksheets were replaced with the new ra-
tio_count_capped_cond worksheet.

* the format of the ratio_cond worksheet in settings.xlsx was updated for use with
the new assign_cond_ratio function.

The job table generation has now been centralized within the make_skeleton.py script.
The job tables are now stored as a dictionary within the dill folder permitting one-time
calculation and universal program access.

* add create job tables routine to make_skeleton.py and store tables as a dictionary,
dill/dict_job_tables.pkl. Additionally, the j_changes and jcnts_arr variables are
stored within the dictionary.

* remove job table generation routines from individual plotting functions
within the matplotlib_charting.py script, the standalone.py**script, and

16.1. version history 385

seniority_list Documentation, Release 0.68

the **compute_measures.py script. Replace all by reading the stored
dill/dict_job_tables.pkl dictionary.

Finally, a new utiliy function was added which prints the contents of dictionaries in an
organized, landscape fashion.

* add pprint_dict function to the matplotlib_charting module.

16.1.20 0.49

March 9th, 2017
* Change documentation references from configuration file to settings dictionary.

* Remove make_pay_tables_from_excel.py script. This script is now incorpo-
rated within the build_program_files.py script

* Change references throughout code from eg_dict to renamed p_dict.

* Create the dill folder with the build_program_files.py script if it does not exist.
An empty dill folder is no longer part of the original program files.

* Modity clear_dill_files function to check for the existence of the dill folder before
executing.

* Add proposal name argument test and exception messages to com-
pute_measures.py and join_inactives.py scripts.

* Add add_editor_list_to_excel function to matplotlib_charting module. This
function will add an edited proposal list order (output of editor tool) to the pro-
posals.xlsx input file, as a new worksheet named edit. The edited proposal list
order may be preserved in this fashion and permits an easy way to reproduce the
corresponding dataset.

* Add code to remove stored pickle files prior to overwriting for a speed improve-
ment.

* Add a return_min option to the max_of _nested_lists function.

» Extensive updates to the matplotlib_charting and the function modules doctrings
defining input types and function descriptions.

* Refactored cond_test plotting function for improved capability and output.

* Add count_ratio_dict worksheet to settings.xlsx input file. This worksheet will
eventually replace the count_ratio_condition and the quota_dict worksheets as
the count ratio condition code is updated.

* Add code to the build_program_files.py script to read the new count_ratio_dict
worksheet.

386 Chapter 16. change log

seniority_list Documentation, Release 0.68

* Add code to the convert function within the converter module to convert the data
from the count_ratio_dict for an enhanced job level model when appropriate.

* Delete function make_intlists_from_columns.
* Modity function make_lists_from_columns to handle deleted function above.

* Add make_group_lists function. This function is used with Excel input (specifi-
cally worksheet cells) to convert string objects (ex. “2,3”’) and integers into Python
lists containing integers. This function is used with the count_ratio_dict dictio-
nary construction.

* Add make_eg_pcnt_column function. Create an array of values which may be
added to the input dataframe as a column reflecting the starting percentage of
each employee within his/her original employee group at month zero.

* Add make_starting_val_column function. Create an array of values which may
be added to the input dataframe as a column reflecting the starting value (month
zero) of a selected attribute for each employee for every month (repeating values
for successive months, indexed and unchanging for each employee).

* Add save_and_load_dill_folder function. Save the current dill folder to the
saved_dill_folders folder (created if it does not already exist). Load a saved dill
folder as the dill folder if it exists. This function allows previously calculated
pickle files (including the datasets) to be loaded into the dill folder for quick re-
view. All adds up to mean convenient switching between previously calculated
case study files.

16.1.21 0.48

February 6th, 2017

This version is a major update. All inputs for the program are now read solely from
spreadsheet workbooks - the configuration files have been completely eliminated. This
change was made to make it easier for non-programmers to interact with seniority_list
and to generally simplify the work flow when setting up the program for a particular
case study and for further parameter modifications in the course of analysis. The new
workbook containing the information previously held within the config files is named
settings.xlsx and is located within the excel folder.

The data from the new settings.xlsx spreadsheet is stored in three dictionaries which
serve as a fast data source for operations.

 Settings dictionary - essentially contains all of the information previously located
in the configuration files.

* Color dictionary - a new source of color lists for plotting.

16.1. version history

387

seniority_list Documentation, Release 0.68

* Attribute dictionary - a collection of dataset column name descriptions used for
plotting titles and labels.

The dictionary generation process has been incorporated within the
build_program_files script, adding to the other generated data files and com-
pensation table data. The dictionaries are stored in the dill folder as separate
files.

When beginning a new case study, the user will now simply create a new case study
folder within the excel folder and paste copies of the sample workbooks into it. The
user will then go through each spreadsheet and modify the contents as appropriate to
the new case study.

The old case_files folder and its contents are no longer used or needed. The old con-
fig.py file in the main seniority_list folder has been eliminated as well.

An added bonus of this update is the availability of a wide-range of chart plotting color
schemes. The new color dictionary is created with multiple color lists as values and
matplotlib colormap names as keys. All matplotlib colormaps are now available at all
times. Each color list is automatically generated with a length equal to the number
of job levels in the data model + 1. This supplies a color for each job level plus an
additional color for a furlough level.

All scripts and functions were updated to utilize the new dictionaries with many func-
tions receiving additional arguments and additional docstring descriptions for even
more control and customization of analysis output.

Four new functions were developed to assist with the spreadsheet to python conversion.
* make_tuples_from_columns
* make_dict_from_columns
* make_intlists_from_columns
* make_lists_from_columns

These functions are essentially “helper” functions used within the
build_program_files script and are contained within the functions module.

Two new plotting-related functions were built as well.
* make_color_list
* add_pad

The make_color_list function is able to perform multiple tasks, from producing a cus-
tom color list to plotting an example of every matplotlib colormap. It is used within
the build_program_files script to produce the color dictionary.

The add_pad function automatically spaces chart labels when they would otherwise
overlap one another. It has been incorporated within several plotting functions.

388 Chapter 16. change log

seniority_list Documentation, Release 0.68

The new plotting functions are located within the matplotlib_charting module.

16.1.22 0.47

January 15th, 2016

* added a metric (attribute) description dictionary, “m_dict”, to general configura-
tion file. This dictionary will provide labels for many of the plotting functions.

* refactored the delayed implementation methodology to use standalone data stored
within a numpy array, generated by a new function, make_preimp_array. The
new method allows any pre-implementation attributes to be transferred to the in-
tegrated dataset and is simpler than earlier code.

* refactored the “cat_order” attribute generation by employing a new function,
make_cat_order. The new function is faster than the old method and correctly
restricts standalone results to available standalone job levels.

* removed enhanced job level conditional variable assignment from case-specific
configuration files and replaced with the new convert function. The new func-
tion is contained within a new module, converter.py, which is imported by the
case-specific file(s). Only basic job level conditional job assignment data will be
entered into the case-specific configuration files now. The basic level data will be
automatically converted to enhanced data as appropriate.

16.1.23 0.46

December 31st, 2016

e added slice_ds_by_index_array function to matplotlib_charting mod-
ule and example to the PLOTTING notebook (subsequently renamed to
slice_ds_by_filtered_index).

—filter an entire dataframe by only selecting rows which match
the filtered results from a target month. In other words, zero in on a slice
of data from a particular month, such as employees holding a specific
job in month 25. Then, using the index of those results, find only those
employees within the entire dataset as an input for further analysis within
the program.

The output may be used as an input to a plotting function or for other
analysis. This function may also be used repeatedly with various fil-
ters, using output of one execution as input for another execution.

 improved the make_decile_bands function and docstring.

» updated case_template.py file variable names for simplicity.

16.1.

version history

389

seniority_list Documentation, Release 0.68

* refactored some hard-coding found within the pre-existing condition section
within the compute_measures.py script. This change will prepare any employee
group(s) for special rights calculations.

* added numerous function docstring improvements, primarily input variable de-
scriptions.

* refactored gen_skel_emp_idx function so that it now generates a long-form em-
ployee index array in addition to the idx_array. The make_skeleton.py script was
updated to use this new output.

* refactored the align_fill_down function, removing one input.
* added numerous comments in many of the program files.

¢ combined the convert_jcnts_to_enhanced and con-
vert_job_changes_to_enhanced functions into one new function, con-
vert_to_enhanced. The list_builder.py script was updated to use the new
function, along with some plotting functions.

* refactored cond_test plotting function, allowing much more flexible job assign-
ment validation.

* added mark_quantiles plotting function. This function is used by the quan-
tile_groupby function below.

* added quantile_groupby plotting function.

— This function permits the user to group the members of a selected employees
group(s) into equally-sized sections, or quantiles, and track the attributes of
those groups over time using various groupby methods. The available meth-
ods are as follows (default is median):

[mean, median, first, last, min, max|

— For example, an input of 40 for the quantiles input would equate to 40 sec-
tions of the initial employee group population, each representing 2.5% of the
group. The progression of these group segments will be calculated and plot-
ted, maintaining the original members of each segment. quantile calculation
from separate groups is independent of each other, but can be tracked through
an integrated dataset for robust comparison of outcome.

— If the user selects “cat_order” (job category numerical ranking), color bands
representing the various job levels may be displayed as a chart background.
This provides the user with a clear visualization of the way the employee
group would progress through the various job levels over time under various
list ordering proposals.

— Examples of the quantile_groupby plotting function have been added to the
PLOTTING notebook.

390 Chapter 16. change log

seniority_list Documentation, Release 0.68

* extensive narrative, definitions, and examples have been added to the “user guide”
section of the documentation.

16.1.24 0.45

November 27th, 2016
 upgraded the editor tool function.

— The editor tool will now automatically use the edited dataset for the recursive
editing routine. The initial “compare_ds_text” dataset reference will now
only have effect when an edited dataset does not exist.

— The process may be interrupted and reset with a new “reset” argument.

— The function will default to the first dataset proposal if the “com-
pare_ds_text” input is invalid.

— The title of the differential chart will now reference the dataset being com-
pared to the baseline.

* many minor code improvements.

* continual work on the program documentation, particularly the operational
overview and the user guide.

16.1.25 0.44

October 20th, 2016
* Refactored make_pay_tables_from_excel.py script.

— The requirements for the input Excel workbook related to compensation have
been greatly simplified. Only two worksheets are necessary, one containing
basic job level hourly rates and another with monthly pay hours per level and
job description labels.

— Enhanced job tables are now automatically prepared when appropriate. This
is controlled by the config.py enhanced_jobs variable.

— Furlough job levels are now added automatically as the bottom level within
each annual grouping of pay data.

— Total monthly compensation tables may be ordered by a select pay year and
longevity level.

— The script now creates a new Excel-format file with worksheets containing
the calculated pay tables utilized for the case study, pay_table_data.xlsx.
Sorted pay tables may be examined and the sort basis changed if desired.

16.1. version history 391

seniority_list Documentation, Release 0.68

The workbook also contains other worksheets pertaining to the job level or-
der used within the model. The file is stored in an auto-generated, case-study
named folder within the “reports” folder.

— Other features added as described within the user guide.

* The join_inactives.py script now stores its Excel file output within the “reports”
folder, next to the pay data file mentioned above.

16.1.26 0.43

October 5th, 2016

* Added the job_count_bands plotting function to the library of built-in plotting
functions included with seniority_list. This function returns a chart which dis-
plays progressive counts of job opportunities available to selected employee
group(s) under selected list order proposal(s) as an area chart with bands of dif-
ferent colors representing job levels. The input data may be filtered by up to three
attributes, so that analysis may target particular population segments, as described
in the previous version summary.

* Continued work developing the “user guide” section of the documentation.

16.1.27 0.42

September 28th, 2016

* This version includes a major update to the plotting functions and changes the
way datasets are loaded for analysis.

* Most built-in plotting functions now have a three-layer filtering capability. This
permits simple drill-down into the dataset for further insight. (Note: This is an
added user-friendly convenience feature only. The capability to pre-filter datasets
existed prior to this update but required additional programming knowledge to
use it.) Analysis of specific subsets of the datasets is now straight-forward and
much more convenient. For example, a target filtered attribute dataset with em-
ployees above a certain age, with a minimum longevity value, who are holding a
certain job would be trivial to select with this new capability. For most plotting
functions, a filtered subset could be viewed for a particular model month as well.
This added filtering capability is handled with the new filter_ds function. The
filter_ds function checks for attribute filtering arguments and uses them to filter
the datasets prior to analysis within the various plotting functions.

* The way that pickeled datasets are read for use in the program has been updated.
The names of the case study proposal worksheets are read from the source Excel
workbook (proposals.xlsx). The program then looks for the matching datasets

392 Chapter 16. change log

seniority_list Documentation, Release 0.68

16.1.28

within the dill folder and loads them into a dictionary, using the proposal names
as keys. Labels associated with the datasets are generated at the same time. These
labels are used in the plotting functions. This functionality is provided with the
new load_datasets function.

Another new function allows flexible dataset variable input for for nearly all of the
plotting functions. The determine_dataset function allows inputs to be a string
key referenced to the dictionary output of the load_datasets function, or any vari-
able representing a pandas dataframe.

All program files and notebooks were updated to handle the new methods de-
scribed above and the plotting functions documentation was revised.

0.41

September 3rd, 2016

Removed “fur.pkl”, “sg.pkl”, and ““active_each_month.pkl” file generation from
the build_program_files.py script. These files were no longer needed.

Consolidated the two standalone dataset scripts into one. This eliminated the
standalone_with_job_changes.py and standalone_no_job_changes.py scripts in
favor of the new script, standalone.py.

Refactored config.py to create a job change schedule reflecting no job changes
when the compute_with_job_changes option is False. This allows the job changes
routine to run with all dataset calculations, adding simplicity and eliminating un-
necessary code.

Updated the pay_tables.xlsx Excel file by removing worksheets which are no
longer needed.

Added a quota_dict section to the basic job level configuration section of sam-
ple3.py and the case_template.py files.

Removed the “actives_only” option in the config.py file. All datasets will now
include any furloughed employees and will not incorporate other inactive em-
ployees.

Modifications made with other program files to accommodate the removal of the
“actives_only” option.

16.1. version history

393

seniority_list Documentation, Release 0.68

16.1.29 0.40

August 31st, 2016
* Add clear_dill_files function, used by ‘“auto-cleaning” below.

* Add “auto-cleaning” of dill folder when case_study config input is changed. This
prevents residual files from a previous study coexisting with new case study files
within the “dill” folder.

* Add auto-generated sample employee and employee list to PLOTTING notebook.
This will pick median employees from any list(s) for use with sample plotting.

* Moved one-time editor tool ipywidget config command to last cell in EDI-
TOR_TOOL notebook. A recent update to ipywidgets required this command
to be run one time. The user will uncomment the code, run the cell, then re-
comment the code.

» Updated case_template.py file to match recent upgrades.

* Add documentation for website user guide relating to input file naming conven-
tions and file locations.

16.1.30 0.39

August 30th, 2016

* Simplified structure of config.py module. Users will have a much clearer under-
standing of modifiable vs. imported variables from the case-specific config file.
Sections designed for user-modifiable inputs are now clearly delineated.

* Added pay table related configuration file inputs which will be imported from the
case-specific config file including option for a future raise and/or temporary pay
scale exceptions.

* Modified contract_pay_year_and_raise function to accept the customized pay-
related inputs from config file.

* Added the plotting function eg_boxplot. This function will plot actual attribute
ranges for employee groups over time as boxplots.

394 Chapter 16. change log

seniority_list Documentation, Release 0.68

16.1.31

0.38

August 26th, 2016

16.1.32

This update is a collection of minor edits, docstring additions, notebook adjust-
ments, and refactoring.

EDITOR notebook... recent update to ipywidgets requires a one line configura-
tion command for proper operation. Added a cell within the notebook to accom-
plish that requirement. (Note: the update broke the button colors)

PLOTTING notebook. .. adjusted variable inputs within notebook cells to match
minor configuration file color list changes

Updated chart labeling for the group_average_and_median function

Improved rows_of_color plotting function, users may now select any job level
combined with any employee group(s) for any month, also can display other cat-
egories such as furlough or other special group

Added documentation for several plotting functions

Removed standalone or furlough colors from case-specific configuration color
lists. Now these additional colors are added when needed from within a function.

0.37

August 12th, 2016

Adjusted editor function widget positioning, and minor code adjustment to permit
compatibility with anaconda ipywidgets version (which is lagging behind latest
version significantly, though the editor retains full functionality).

Added group_average_and_median plotting function. This function permits plot-
ting of group average and/or median for a selected attribute over time for a main
and secondary dataset. Standalone data may be used as main or secondary data.
The attributes may be further filtered/sliced by up to 3 constraints, such as age,
longevity, or job level. This function can plot basic data such as average list per-
centage or could, for example, plot the average job category rank for employees
hired prior to a certain date who are over or under a certain age, for a selected
integrated dataset and/or standalone data (or for two integrated datasets).

16.1. version history

395

seniority_list Documentation, Release 0.68

16.1.33 0.36

August 9th, 2016

* job_time_change function may now display job numbers or custom job labels
(from case-specific config file).

* Added EDITOR_TOOL.ipynb notebook to repository.

* Eliminated need for “edit_mode” input within general configuration file. The
program will now use edit mode whenever the editor tool is used.

16.1.34 0.35

August 4th, 2016

» Refactored parallel plotting function to handle any number of datasets and any
number of employee groups.

* Added new plotting function job_time_change. This function compares the
amount time in months spent in various jobs under different list proposals. The in-
formation is presented only for employees who experience a change. Any number
of datasets, employee groups, and job levels may be selected for analysis.

* Added documentation for multiple plotting functions

16.1.35 0.34

July 31st, 2016

* Added cat_order attribute (job rank number) to standalone dataset. The cat_order
for each independent group is normalized to be accurate for the integrated group.
This allows direct comparison with integrated job levels.

* Refactored compute_measures script so that standalone cat_order data is
merged with integrated cat_order data when a delayed implementation ex-
ists. This new capability can be visualized for individual employees with the
job_level_progression plotting function.

396 Chapter 16. change log

seniority_list Documentation, Release 0.68

16.1.36

0.33

July 26th, 2016

16.1.37

Refactored eg_diff_boxplot function to allow any number of datasets to be com-
pared with standalone data or with each other. Employee groups for analysis may
now be selected and the plot colors will be correct for the group(s). Option added
to exclude employees who will be furloughed at any point within the data model,
reducing or eliminating outlier data for some attribute measures.

0.32

July 17th, 2016

16.1.38

Added additional filtering capability to the editor tool. Filtering may now be ac-
complished with monthly data combined with with additional attribute selection.

Added reset_editor function to restore the editor if invalid filter attributes are se-
lected, leading to an exception. Exception handling will be added as my available
developer time permits.

0.31

July 16th, 2016

16.1.39

Added option to increase employee retirement age. The retirement age may be
raised with specified increments at designated times in the future.

New function clip_ret_ages sets proper retirement age for employees in their re-
tirement month when the model includes a retirement age increase.

Added a “ret_mark” column during the skeleton file creation routine which is
passed to the calculated datasets. The ret_mark column will indicate “1” when
an employee is in their last working month. This is helpful for filtering or plotting
retirement data when the datasets contain multiple retirement ages.

0.30

July 10th, 2016

Altered standalone dataset generation scripts to accept any number of employee
groups.

Modified differential scatter plotting function to accept any number of proposals
and employee groups

16.1. version history

397

seniority_list Documentation, Release 0.68

* Replaced numpy “unique” function with pandas “unique” function throughout the
code for speed improvement

16.1.40 0.29

July 7th, 2016

* Changed “cat_order” attribute calculation method to a groupby operation vs. a
sort and resort yielding 10-15 percent reduction in total dataset compilation time.

16.1.41 0.28

July 6th, 2016

* Added a case_files folder to the project. This will be the home for data specific
files belonging to a particular integration case. The general config file will import
the case-specific information and also allow other general options to be added and
used by seniority_list. This arrangement will permit multiple cases to be available
for analysis, easily selected with one input within the general config file.

* Moved the special condition job assignment data out of the general config file and
into the case-specific file(s).

* Moved the notebooks from the notebook folder to the seniority_list folder and
deleted the notebooks folder. This will allow the notebooks to run without import
issues at this point.

* Added information to the “installation” and “user guide” sections of the docu-
mentation. Much more to come.

16.1.42 0.27

July 4th, 2016

* Added cond_test function. Used to visualize selected job counts applicable to
computed job assignment condition. Primary usage is testing, though the function
can chart any job level(s).

* Added single_emp_compare function. Select a single employee and compare pro-
posal outcomes using various calculated measures.

* Add installation page to documentation.

* Add notebooks folder to project with “Plotting” and “Run_Scripts” jupyter note-
book files.

* Minor code cleanup.

398 Chapter 16. change log

seniority_list Documentation, Release 0.68

16.1.43 0.26

June 24th, 2016

* Added plotting functions job_count_charts and emp_quick_glance. Up-
dated the quantile_years_in_position plot layout and added helper function
build_subplotting_order.

16.1.44 0.25

June 18th, 2016

* Initial work for config, job assign, and data source refactor. Initial spreadsheet
list data, compensation information, and order proposals will be contained within
case-specific folders within the “excel” folder and will be selected with a config
file variable. Basic program files are generated from these properly formatted
source spreadsheets. Other case data such as job counts, job changes, conditions,
and recall schedules will be contained within case-specific python modules.

* Function module docstring cleanup

16.1.45 0.24

June 12th, 2016

* Split align function into two functions: align_next and align_fill_down. Month-
to-month data alignment is now accomplished with numpy index alignment vs.
pandas dataframe alignment. The new align_next function replaces the old align
function and is primarily used during the job assignment portion of the dataset
generation scripts. Net result is an overall 40-50 percent reduction in the time
required for dataset generation.

* Other minor code improvements throughout and additions to function documen-
tation.

16.1.46 0.23

June 5th, 2016

* Added find_row_orphans and compare_dataframes functions to the list_builder
script. These functions are used to compare dataframe columns and/or entire
dataframes. They are able to pinpoint differences within large datasets very
quickly, which is particularly helpful during the master list data construction
phase.

16.1. version history

399

seniority_list Documentation, Release 0.68

16.1.47 0.22

June 3rd, 2016

* Added sort_eg_attributes, build_list, sort_and_rank, and names_to_integers
functions to the list_builder script. List proposals may now be rapidly con-
structed from sample or case master lists. One or more attribute columns may
be selected as list order inputs and a “hybrid” ordering achieved by applying vari-
able weightings to those columns.

16.1.48 0.21

May 28th, 2016

* Added list_builder script and the prepare_master_list function. This is the first
step toward manual list building using various attribute weighting, merging, and
sorting. This feature is considered a convenience tool only. It may be used for
initial list building and ordering prior to analysis and further editing.

16.1.49 0.20

May 27th, 2016

* Added a sample pay table file to the sample_data folder. Sample pay tables may
now be generated from the sample file for use with the sample datasets. The
sample file simulates a typical Excel input file with pay scale information.

* Replaced the previous pay table generation script with a modified version. The
script converts the Excel workbook to Python pickle files for use within the pro-
gram, either with real or sample data.

16.1.50 0.19

May 26th, 2016

* Added sample master list and sample proposals (both in Excel format) to the sam-
ple_data folder. These files can be the source for testing the operation of the pro-
gram and creating sample datasets when the “sample_mode” option within the
configuration file is set to “True”. Sample pay-related files will be added soon.
Updated several other scripts, including significant updates to the config file, so
they will operate with the sample data.

* Added print_config_selections function. The function provides a quick report of
configuration file selections in a dataframe format.

400 Chapter 16. change log

seniority_list Documentation, Release 0.68

16.1.51 0.18

May 19th, 2016

* Added build_files script. Build supporting files from initial Excel file input such
as master data list, proposal orderings, last month percent, etc.

* Added standalone_no_job_changes script. Used with most basic dataset cre-
ation. This file is rarely used but available if a dataset without any job changes
over time is desired.

e Other coding changes to format the program to accept a wider range of list input

16.1.52 0.17

May 16th, 2016

* Added join_inactives script. Edited or active employee only lists may now be
merged into the original master list which contains all employees including in-
active employees (such as sick leave, supervisory, etc.) The inactives may be
attached either to the “just senior” employee group active cohort or the “just ju-
nior” with an argument option. The resulting list will be sorted and numbered in
the new list order.

16.1.53 0.16

May 14th, 2016

* Added range_diff plotting function which computes and displays aggregate dif-
ferential data over time, comparing proposal results with standalone data.

* Modified compute_measures script. A master data file will now be reordered by
a specific proposal list order or an order from the editor tool instead of storing
separate data files for each proposal.

16.1.54 0.15

May 12th, 2016

* Added eg_multiplot_with_cat_order function. Adds flexible x y plotting for most
attributes with special color bands and scaling when cat_order is the selected
measure. The function is able to select certain employee groups for independent
views.

16.1. version history 401

seniority_list Documentation, Release 0.68

16.1.55 0.14

May 2nd, 2016

* Added multiple controls to the editor interface making the tool easier to use. “One
click” recalculation with chart updating is now enabled.

16.1.56 0.13

May 1st, 2016

* Added editor function. Editor is an interactive, visual list editing tool for use
within the Jupyter notebook. This tool can be used to remove list distortions
using comparative data.

16.1.57 0.12

April 26th, 2016

* Added job_transfer function.

16.1.58 0.11

April 22nd, 2016
* Added edit mode to config file in preparation for visual span selector editing tool.

* Minor documentation edits including adding proper table format for documenta-
tion format.

* New differential option added to quantile_years_in_position plotting function
along with other plot output options.

* Added new quantile_bands_in_position plotting function.

16.1.59 0.10

April 15th, 2016

¢ Initial commit.

402 Chapter 16. change log

CHAPTER
SEVENTEEN

LICENSE

17.1 GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is per-
mitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds
of works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License
is intended to guarantee your freedom to share and change all versions of a program—to
make sure it remains free software for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our software; it applies also to any
other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can
get it if you want it, that you can change the software or use pieces of it in new free
programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or
asking you to surrender the rights. Therefore, you have certain responsibilities if you
distribute copies of the software, or if you modify it: responsibilities to respect the
freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make
sure that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

403

http://fsf.org/

seniority_list Documentation, Release 0.68

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to
copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of
the software inside them, although the manufacturer can do so. This is fundamentally
incompatible with the aim of protecting users’ freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for individuals to use,
which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise
substantially in other domains, we stand ready to extend this provision to those domains
in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose comput-
ers, but in those that do, we wish to avoid the special danger that patents applied to a
free program could make it effectively proprietary. To prevent this, the GPL assures
that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS

0. Definitions.
“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes

404 Chapter 17. license

seniority_list Documentation, Release 0.68

copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except to
the extent that warranties are provided), that licensees may convey the work under this
License, and how to view a copy of this License. If the interface presents a list of user
commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particu-
lar programming language, one that is widely used among developers working in that
language.

The “System Libraries” of an executable work include anything, other than the work
as a whole, that (a) is included in the normal form of packaging a Major Component,
but which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

17.1. GNU GENERAL PUBLIC LICENSE 405

seniority_list Documentation, Release 0.68

All rights granted under this License are granted for the term of copyright on the Pro-
gram, and are irrevocable provided the stated conditions are met. This License explic-
itly affirms your unlimited permission to run the unmodified Program. The output from
running a covered work is covered by this License only if the output, given its content,
constitutes a covered work. This License acknowledges your rights of fair use or other
equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without con-
ditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively for
you, or provide you with facilities for running those works, provided that you comply
with the terms of this License in conveying all material for which you do not control
copyright. Those thus making or running the covered works for you must do so ex-
clusively on your behalf, under your direction and control, on terms that prohibit them
from making any copies of your copyrighted material outside their relationship with
you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that you

406 Chapter 17. license

seniority_list Documentation, Release 0.68

also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b) The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

¢) You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with
any applicable section 7 additional terms, to the whole of the work, and all its
parts, regardless of how they are packaged. This License gives no permission to
license the work in any other way, but it does not invalidate such permission if
you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are
not by their nature extensions of the covered work, and which are not combined with it
such as to form a larger program, in or on a volume of a storage or distribution medium,
is called an “aggregate” if the compilation and its resulting copyright are not used to
limit the access or legal rights of the compilation’s users beyond what the individual
works permit. Inclusion of a covered work in an aggregate does not cause this License
to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy
of the Corresponding Source for all the software in the product that is covered by
this License, on a durable physical medium customarily used for software inter-
change, for a price no more than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the Corresponding Source from a
network server at no charge.

¢) Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally

17.1. GNU GENERAL PUBLIC LICENSE 407

seniority_list Documentation, Release 0.68

and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on a
different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying
where to find the Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is available for as
long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform
other peers where the object code and Corresponding Source of the work are
being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a typi-
cal or common use of that class of product, regardless of the status of the particular user
or of the way in which the particular user actually uses, or expects or is expected to use,
the product. A product is a consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions
of a covered work in that User Product from a modified version of its Corresponding
Source. The information must suffice to ensure that the continued functioning of the
modified object code is in no case prevented or interfered with solely because modifi-
cation has been made.

If you convey an object code work under this section in, or with, or specifically for use
in, a User Product, and the conveying occurs as part of a transaction in which the right
of possession and use of the User Product is transferred to the recipient in perpetuity or
for a fixed term (regardless of how the transaction is characterized), the Corresponding
Source conveyed under this section must be accompanied by the Installation Informa-
tion. But this requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the work has
been installed in ROM).

408 Chapter 17. license

seniority_list Documentation, Release 0.68

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any addi-
tional permissions from that copy, or from any part of it. (Additional permissions may
be written to require their own removal in certain cases when you modify the work.)
You may place additional permissions on material, added by you to a covered work, for
which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement the
terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections
15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

¢) Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e) Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who

17.1. GNU GENERAL PUBLIC LICENSE 409

seniority_list Documentation, Release 0.68

conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, contains
a notice stating that it is governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains a further restric-
tion but permits relicensing or conveying under this License, you may add to a covered
work material governed by the terms of that license document, provided that the further
restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.
However, nothing other than this License grants you permission to propagate or modify

410 Chapter 17. license

seniority_list Documentation, Release 0.68

any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or sub-
stantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of fur-
ther modification of the contributor version. For purposes of this definition, “control”
includes the right to grant patent sublicenses in a manner consistent with the require-
ments of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

17.1. GNU GENERAL PUBLIC LICENSE 411

seniority_list Documentation, Release 0.68

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and
under the terms of this License, through a publicly available network server or other
readily accessible means, then you must either (1) cause the Corresponding Source to
be so available, or (2) arrange to deprive yourself of the benefit of the patent license
for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. “Knowingly rely-
ing” means you have actual knowledge that, but for the patent license, your conveying
the covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason to
believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of
the rights that are specifically granted under this License. You may not convey a cov-
ered work if you are a party to an arrangement with a third party that is in the business
of distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license
or other defenses to infringement that may otherwise be available to you under appli-
cable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a con-
sequence you may not convey it at all. For example, if you agree to terms that obligate
you to collect a royalty for further conveying from those to whom you convey the Pro-
gram, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or

412 Chapter 17. license

seniority_list Documentation, Release 0.68

combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a
certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-

17.1. GNU GENERAL PUBLIC LICENSE 413

seniority_list Documentation, Release 0.68

TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

END OF TERMS AND CONDITIONS

414 Chapter 17. license

CHAPTER
EIGHTEEN

CONTACT

The seniority_list program provides a pathway to fair, equitable, and transparent work-
force integration outcome through modern data analysis technology - while signifi-
cantly reducing the cost, time, and angst historically expended in past procedings.

Please note that while seniority_list was developed with the airline industry in mind,
it may be adapted to any industry or group where workers operate under a seniority
system.

I co-authored an article introducing seniority_list which was published by Cornell Uni-
versity. Please click here'”* for a download link to the paper.

Questions, comments, suggestions, and consulting inquiries are welcome.
Bob Davison

rubydatasystems @ fastmail.net

123 https://ecommons.cornell.edu/items/9bdd9c44-25ed-41e9-9c8f-3a944fc9979a

415

https://ecommons.cornell.edu/items/9bdd9c44-25ed-41e9-9c8f-3a944fc9979a
mailto:rubydatasystems@fastmail.net

seniority_list Documentation, Release 0.68

416 Chapter 18. contact

C

converter, 241

e

editor_function, 243

f

functions, 247

[
interactive_plotting, 285

list_builder, 287

m
matplotlib_charting, 293

r
reports, 363

PYTHON MODULE INDEX

417

seniority_list Documentation, Release 0.68

418 Python Module Index

A

add Q) (editor_function.Kwargs method), 243

add_pad() (in module matplotlib_charting),
293

add_zero_col () (in module functions), 247

age_correction() (in module functions), 247

age_kde_dist() (in module mat-
plotlib_charting), 293
age_vs_spcnt () (in module mat-

plotlib_charting), 294
align_fill_down() (in module functions),
248
align_next() (in module functions), 248
alpha_list() (in module editor_function),
243
annual_charts() (in module reports), 363
anon_dates () (in module functions), 249
anon_empkeys () (in module functions), 249
anon_master () (in module functions), 250
anon_names () (in module functions), 252
anon_pay () (in module functions), 252
anon_pay_table() (in module functions), 253
assign_cond_ratio() (in module functions),
253
assign_job_counts() (in module functions),
254
assign_jobs_full_flush_job_changes()
(in module functions), 255
assign_jobs_nbnf_job_changes()
module functions), 255
assign_standalone_job_changes()
module functions), 257

(in
(in

B

bk_basic_interactive() (in module inter-

INDEX

active_plotting), 285
build_list () (in module list_builder), 287
build_subplotting_order() (in module
matplotlib_charting), 296

C

career_months () (in module functions), 259

check_eg_input() (in module mat-
plotlib_charting), 296

clear () (editor_function.Kwargs method), 243

clear_dill_files() (in module functions),
259

clip_ret_ages() (in module functions), 259

cohort_differential() (in module mat-
plotlib_charting), 296

color_list() (in module editor_function),
243

compare_dataframes()
list_builder), 288

cond_test () (in module matplotlib_charting),
298

contract_year_and_raise()
functions), 259

convert () (in module converter), 241

convert_to_datetime() (in module func-
tions), 260

convert_to_enhanced() (in module func-
tions), 260

convert_to_hex() (in module functions), 261

converter

(in module

(in module

module, 241
copy_excel_file() (in module functions),
262
count_avail_jobs() (in module functions),
263

419

seniority_list Documentation, Release 0.68

count_per_month() (in module functions),
263

create_snum_and_spcnt_arrays()
module functions), 263

cross_val () (in module functions), 264

D

Data (class in editor_function), 243

(in

determine_dataset() (in module mat-
plotlib_charting), 301
diff_range() (in module mat-

plotlib_charting), 301
differential_scatter() (in module

plotlib_charting), 303
display_proposals() (in

plotlib_charting), 305
distribute() (in module functions), 264

E

editor () (in module editor_function), 243
editor_function
module, 243

mat-

module mat-

eg_attributes() (in module mat-
plotlib_charting), 306

eg_boxplot() (in module mat-
plotlib_charting), 310

eg_diff boxplot() (in module mat-

plotlib_charting), 311
eg_multiplot_with_cat_order() (in mod-

ule matplotlib_charting), 313
eg_quotas () (in module functions), 264
emp_quick_glance() (in module

plotlib_charting), 316

mat-

F

filter_ds () (in module matplotlib_charting),
316

find_index_locs() (in module list_builder),
289

find_index_val () (in module functions), 265

find_nearest() (in module functions), 265

find_row_orphans() (in module
list_builder), 289
find_series_locs() (in module

list_builder), 290

functions
module, 247

G

gen_month_skeleton() (in module func-
tions), 265

gen_skel_emp_idx() (in module functions),
266

get_indexes () (in module functions), 266

get_job_change_months () (in module func-
tions), 266

get_job_reduction_months() (in module
functions), 266

get_month_slice() (in module functions),
266

get_recall_months() (in module functions),
267

group_average_and_median() (in module
matplotlib_charting), 317

H

hex_dict () (in module functions), 267

index_duplicates() (in module functions),
267
index_dups_exist() (in module functions),
267
interactive_plotting
module, 285

J

job_count_bands() (in module mat-
plotlib_charting), 319
job_count_charts() (in module mat-

plotlib_charting), 321
job_diff to_excel() (in module reports),
365
job_gain_loss_table() (in module func-
tions), 267
job_grouping_over_time () (in module mat-
plotlib_charting), 323
job_level_progression() (in module mat-
plotlib_charting), 325

420

Index

seniority_list Documentation, Release 0.68

job_time_change() (in module mat-
plotlib_charting), 328
job_transfer() (in module mat-

plotlib_charting), 330

K

kde_dist() (in module matplotlib_charting),
333
Kwargs (class in editor_function), 243

L

line_widths() (in module editor_function),
245
list_builder
module, 287
load_datasets() (in module functions), 268
longevity_at_startdate() (in module
functions), 268

M

make_cat_order () (in module functions), 268
make_color_list() (in module mat-
plotlib_charting), 334
make_dataset() (in module editor_function),
245
make_decile_bands () (in module functions),
269
make_delayed_job_counts() (in module
functions), 270
make_dict_from_columns()
functions), 270
make_eg_pcnt_column() (in module func-
tions), 271
make_group_lists() (in module functions),
272
make_intgrtd_from_sep_stove_lists()
(in module functions), 272
make_jcnts () (in module functions), 273
make_lists_from_columns() (in module
functions), 274
make_lower_slice_limits() (in module
functions), 275
make_original_jobs_from_counts()
module functions), 275

(in module

(in

make_preimp_array () (in module functions),
276
make_starting_val_column() (in module
functions), 276
make_stovepipe_jobs_from_jobs_arr()
(in module functions), 276
make_stovepipe_prex_shortform()
module functions), 277
make_tuples_from_columns() (in module
functions), 278
mark_for_furlough() (in module functions),
278
mark_for_recall() (in module functions),
279
mark_fur_range() (in module functions), 280
mark_quantiles() (in module mat-
plotlib_charting), 335
matplotlib_charting
module, 293
max_of_nested_lists() (in module func-
tions), 280
module
converter, 241
editor_function, 243
functions, 247
interactive_plotting, 285
list_builder, 287
matplotlib_charting, 293
reports, 363
monotonic() (in module functions), 280
multiline_plot_by_emp() (in module mat-
plotlib_charting), 336

(in

N

names_to_integers() (in module
list_builder), 290
numeric_test() (in module mat-

plotlib_charting), 337

P

parallel () (in module matplotlib_charting),
338

pct_format () (in module
plotlib_charting), 339

mat-

Index

421

seniority_list Documentation, Release 0.68

percent_bins() (in module mat-
plotlib_charting), 339
percent_diff_bins() (in module mat-
plotlib_charting), 340
pprint_dict() (in module mat-
plotlib_charting), 342
prepare_master_list() (in module

list_builder), 291
print_settings() (in module functions), 280
PropOrder (class in editor_function), 243

Q

quantile_bands_over_time() (in module
matplotlib_charting), 342

quantile_groupby() (in module
plotlib_charting), 344

quantile_years_in_position() (in module
matplotlib_charting), 349

mat-

R

remove() (editor_function.Kwargs method),
243

remove_zero_groups() (in module func-
tions), 280

reports

module, 363

retirement_charts() (in module reports),
366

rows_of_color() (in
plotlib_charting), 351

module mat-

S

sample_dataframe() (in module functions),

sort_eg_attributes() (in module
list_builder), 292

squeeze_increment () (in module functions),
283

squeeze_logrithmic() (in module func-
tions), 283

starting_age() (in module functions), 284

stats_to_excel () (in module reports), 368

stripplot_dist_in_category() (in module
matplotlib_charting), 355

stripplot_eg_density() (in module mat-

plotlib_charting), 358

T

test_df_col_or_idx_equivalence() (in
module list_builder), 292
to_percent() (in module mat-

plotlib_charting), 359

U

update() (editor_function.Kwargs method),
243

update_data()
method), 243

update_excel () (in module functions), 284

update_name() (editor_function.PropOrder
method), 243

update_order() (editor_function.PropOrder
method), 243

use_first_proposal_found() (in module
editor_function), 245

(editor_function.Data

\Y

281 violinplot_by_eg() (in module mat-
save_and_load_dill_folder() (in module plotlib_charting), 359
functions), 281
set_snapshot_weights() (in module func-
tions), 282
single_emp_compare() (in module mat-
plotlib_charting), 353
slice_ds_by_filtered_index() (in module
matplotlib_charting), 355
sort_and_rank() (in module list_builder),
291
422 Index

	I seniority_list
	features
	program notes
	installation
	dependencies
	installing Python and Python libraries
	installing seniority_list

	operational overview
	abstract
	basics

	quick outline of seniority_list
	gather and prepare data
	Excel workbook data sources
	other list order sources

	build the basic program files from the input data
	create the “skeleton”
	calculate standalone dataset
	calculate integrated order-dependent dataset
	analyze results
	modify list order with the editor tool (optional)
	create lists with list_builder (optional)
	reinsert inactives

	interacting with seniority_list

	user guide
	general
	program components and file structure

	program flow
	input data
	setup workflow summary

	build program files
	descriptions of the created files:
	pay_table_data.xlsx (program-generated workbook)

	creating the static ‘skeleton’ file
	creating datasets
	filtering and slicing datasets
	visualization

	editor tool
	the editor tool controls
	squeeze panel
	extra filters panel
	animate panel
	proposal_save panel
	center section
	display panel
	size_alpha panel
	grid_bg panel
	hover panel
	density panel
	edit zone slider

	using the editor tool
	attribute selection
	basic filters
	extra filters
	marker style and axis mode selection
	execution buttons
	differential display mode
	absolute display mode
	applying conditions
	squeezing
	using the bokeh chart tools
	editor function inputs
	editor output

	summary

	building lists
	notebook interface
	notebook basics
	starting the notebook
	imports
	running cells
	running scripts within cells
	function docstrings
	functions and variables
	exiting the notebook

	sample notebooks

	program demonstration
	new case study
	set up inputs
	set up jupyter notebook
	create program files and datasets
	analyze datasets
	create or edit lists
	generate final list

	changing program options or settings
	saving/loading calculated case study data
	anonymizing input data
	anonymize master.xlsx
	anonymize pay_tables.xlsx
	reversion to original data

	program restoration

	excel input files
	master.xlsx
	master.xlsx format guide

	proposals.xlsx
	proposal.xlsx format guide

	pay_tables.xlsx
	pay_tables.xlsx format guide
	rates
	hours

	job level hierarchy

	settings.xlsx
	settings.xlsx format guide
	scalars
	attribute_dict
	ret_incr
	pay_exceptions
	job_counts
	job_changes
	recall
	prex
	ratio_cond
	ratio_count_capped_cond
	proposal_dictionary
	eg_colors
	basic_job_colors
	enhanced_job_colors

	anonymizing input data

	quick report
	general
	computed statistics
	grouping method definitions
	excel files
	chart images
	time-in-job and career pay differential report

	example gallery
	screenshots and notes
	editor tool

	converter module
	editor_function module
	functions module
	interactive_plotting module
	list_builder module
	matplotlib_charting module
	reports module
	change log
	version history
	0.68
	0.67
	0.66
	0.65
	0.64
	0.63
	0.62
	0.61
	0.60
	0.59
	0.58
	0.57
	0.56
	0.55
	0.54
	0.53
	0.52
	0.51
	0.50
	0.49
	0.48
	0.47
	0.46
	0.45
	0.44
	0.43
	0.42
	0.41
	0.40
	0.39
	0.38
	0.37
	0.36
	0.35
	0.34
	0.33
	0.32
	0.31
	0.30
	0.29
	0.28
	0.27
	0.26
	0.25
	0.24
	0.23
	0.22
	0.21
	0.20
	0.19
	0.18
	0.17
	0.16
	0.15
	0.14
	0.13
	0.12
	0.11
	0.10

	license
	GNU GENERAL PUBLIC LICENSE

	contact
	Python Module Index
	Index

